Search (29 results, page 2 of 2)

  • × author_ss:"Chen, C."
  1. Ping, Q.; He, J.; Chen, C.: How many ways to use CiteSpace? : a study of user interactive events over 14 months (2017) 0.01
    0.0056654564 = product of:
      0.014163641 = sum of:
        0.01021673 = weight(_text_:a in 3602) [ClassicSimilarity], result of:
          0.01021673 = score(doc=3602,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19109234 = fieldWeight in 3602, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3602)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 3602) [ClassicSimilarity], result of:
              0.007893822 = score(doc=3602,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 3602, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3602)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Using visual analytic systems effectively may incur a steep learning curve for users, especially for those who have little prior knowledge of either using the tool or accomplishing analytic tasks. How do users deal with a steep learning curve over time? Are there particularly problematic aspects of an analytic process? In this article we investigate these questions through an integrative study of the use of CiteSpace-a visual analytic tool for finding trends and patterns in scientific literature. In particular, we analyze millions of interactive events in logs generated by users worldwide over a 14-month period. The key findings are: (i) three levels of proficiency are identified, namely, level 1: low proficiency, level 2: intermediate proficiency, and level 3: high proficiency, and (ii) behavioral patterns at level 3 are resulted from a more engaging interaction with the system, involving a wider variety of events and being characterized by longer state transition paths, whereas behavioral patterns at levels 1 and 2 seem to focus on learning how to use the tool. This study contributes to the development and evaluation of visual analytic systems in realistic settings and provides a valuable addition to the study of interactive visual analytic processes.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.5, S.1234-1256
    Type
    a
  2. Chen, C.: Visualizing scientific paradigms : an introduction (2003) 0.01
    0.005513504 = product of:
      0.01378376 = sum of:
        0.008258085 = weight(_text_:a in 1455) [ClassicSimilarity], result of:
          0.008258085 = score(doc=1455,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 1455, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1455)
        0.005525676 = product of:
          0.011051352 = sum of:
            0.011051352 = weight(_text_:information in 1455) [ClassicSimilarity], result of:
              0.011051352 = score(doc=1455,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13576832 = fieldWeight in 1455, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1455)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This special topic issue includes a collection of seven articles an visualizing scientific paradigms. All articles in this special issue reflect the influence of Thomas Kuhn's structure of scientific revolutions an our understanding of the growth of scientific knowledge. On the other hand, each article represents a unique perspective of how one may pursue the quest for transforming something as intangible and empirically evasive as invisible colleges and competing paradigms into something that is more accessible and traceable to scholars and professions of various disciplines, ranging from historians, philosophers, and educators to scientists and engineers.
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.5, S.392-393
    Type
    a
  3. Chen, C.; Hu, Z.; Milbank, J.; Schultz, T.: ¬A visual analytic study of retracted articles in scientific literature (2013) 0.01
    0.005182888 = product of:
      0.012957219 = sum of:
        0.009010308 = weight(_text_:a in 610) [ClassicSimilarity], result of:
          0.009010308 = score(doc=610,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1685276 = fieldWeight in 610, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=610)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 610) [ClassicSimilarity], result of:
              0.007893822 = score(doc=610,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 610, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=610)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Retracting published scientific articles is increasingly common. Retraction is a self-correction mechanism of the scientific community to maintain and safeguard the integrity of scientific literature. However, a retracted article may pose a profound and long-lasting threat to the credibility of the literature. New articles may unknowingly build their work on false claims made in retracted articles. Such dependencies on retracted articles may become implicit and indirect. Consequently, it becomes increasingly important to detect implicit and indirect threats. In this article, our aim is to raise the awareness of the potential threats of retracted articles even after their retraction and demonstrate a visual analytic study of retracted articles with reference to the rest of the literature and how their citations are influenced by their retraction. The context of highly cited retracted articles is visualized in terms of a co-citation network as well as the distribution of articles that have high-order citation dependencies on retracted articles. Survival analyses of time to retraction and postretraction citation are included. Sentences that explicitly cite retracted articles are extracted from full-text articles. Transitions of topics over time are depicted in topic-flow visualizations. We recommend that new visual analytic and science mapping tools should take retracted articles into account and facilitate tasks specifically related to the detection and monitoring of retracted articles.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.2, S.234-253
    Type
    a
  4. Ding, W.; Chen, C.: Dynamic topic detection and tracking : a comparison of HDP, C-word, and cocitation methods (2014) 0.00
    0.004725861 = product of:
      0.011814652 = sum of:
        0.007078358 = weight(_text_:a in 1502) [ClassicSimilarity], result of:
          0.007078358 = score(doc=1502,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 1502, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1502)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 1502) [ClassicSimilarity], result of:
              0.009472587 = score(doc=1502,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 1502, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1502)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Cocitation and co-word methods have long been used to detect and track emerging topics in scientific literature, but both have weaknesses. Recently, while many researchers have adopted generative probabilistic models for topic detection and tracking, few have compared generative probabilistic models with traditional cocitation and co-word methods in terms of their overall performance. In this article, we compare the performance of hierarchical Dirichlet process (HDP), a promising generative probabilistic model, with that of the 2 traditional topic detecting and tracking methods-cocitation analysis and co-word analysis. We visualize and explore the relationships between topics identified by the 3 methods in hierarchical edge bundling graphs and time flow graphs. Our result shows that HDP is more sensitive and reliable than the other 2 methods in both detecting and tracking emerging topics. Furthermore, we demonstrate the important topics and topic evolution trends in the literature of terrorism research with the HDP method.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.10, S.2084-2097
    Type
    a
  5. Liu, M.; Bu, Y.; Chen, C.; Xu, J.; Li, D.; Leng, Y.; Freeman, R.B.; Meyer, E.T.; Yoon, W.; Sung, M.; Jeong, M.; Lee, J.; Kang, J.; Min, C.; Zhai, Y.; Song, M.; Ding, Y.: Pandemics are catalysts of scientific novelty : evidence from COVID-19 (2022) 0.00
    0.004624805 = product of:
      0.011562012 = sum of:
        0.0076151006 = weight(_text_:a in 633) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=633,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 633, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=633)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 633) [ClassicSimilarity], result of:
              0.007893822 = score(doc=633,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=633)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease. During COVID-19, papers with more first-time collaboration were found to be more novel and international collaboration did not hamper novelty as it had done in the normal periods. The findings suggest the necessity of reaching out for distant resources and the importance of maintaining a collaborative scientific community beyond nationalism during a pandemic.
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.8, S.1065-1078
    Type
    a
  6. Leydesdorff, L.; Rafols, I.; Chen, C.: Interactive overlays of journals and the measurement of interdisciplinarity on the basis of aggregated journal-journal citations (2013) 0.00
    0.0035052493 = product of:
      0.008763123 = sum of:
        0.0048162127 = weight(_text_:a in 1131) [ClassicSimilarity], result of:
          0.0048162127 = score(doc=1131,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.090081796 = fieldWeight in 1131, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1131)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 1131) [ClassicSimilarity], result of:
              0.007893822 = score(doc=1131,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 1131, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1131)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Using the option Analyze Results with the Web of Science, one can directly generate overlays onto global journal maps of science. The maps are based on the 10,000+ journals contained in the Journal Citation Reports (JCR) of the Science and Social Sciences Citation Indices (2011). The disciplinary diversity of the retrieval is measured in terms of Rao-Stirling's "quadratic entropy" (Izsák & Papp, 1995). Since this indicator of interdisciplinarity is normalized between 0 and 1, interdisciplinarity can be compared among document sets and across years, cited or citing. The colors used for the overlays are based on Blondel, Guillaume, Lambiotte, and Lefebvre's (2008) community-finding algorithms operating on the relations among journals included in the JCR. The results can be exported from VOSViewer with different options such as proportional labels, heat maps, or cluster density maps. The maps can also be web-started or animated (e.g., using PowerPoint). The "citing" dimension of the aggregated journal-journal citation matrix was found to provide a more comprehensive description than the matrix based on the cited archive. The relations between local and global maps and their different functions in studying the sciences in terms of journal literatures are further discussed: Local and global maps are based on different assumptions and can be expected to serve different purposes for the explanation.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.12, S.2573-2586
    Type
    a
  7. Chen, C.; Czerwinski, M.: Spatial ability and visual navigation : an empirical study (1997) 0.00
    0.002311782 = product of:
      0.01155891 = sum of:
        0.01155891 = weight(_text_:a in 2914) [ClassicSimilarity], result of:
          0.01155891 = score(doc=2914,freq=16.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 2914, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2914)
      0.2 = coord(1/5)
    
    Abstract
    Describes a study of individuals' spatial navigation strategies and a number of performance and preference measures with regard to the design of a 3D visualisation. The underlying semantic space of the user interface consists of a collection of papers from the 3 most recent ACM SIGCHI conference proceedings, visualised as a virtual reality network. This network was automatically constructed based on semantic similarities derived from latent semantic analysis. The project studied the search strategies and general preferences of 11 subjects who used this system to find papers on various topics. The findings should be valuable for designers and evaluators of 3D user interfaces. The results highlight the importance of structural elements in the design of a semantically based user interface, because search strategies of users relied heavily on these mechanisms in the design. Describes the implications for user interface design based on users' psychological models of a semantic space
    Type
    a
  8. Chen, C.; Rada, R.: ¬A conceptual model for supporting collaborative authoring and use (1994) 0.00
    0.0019071229 = product of:
      0.009535614 = sum of:
        0.009535614 = weight(_text_:a in 7554) [ClassicSimilarity], result of:
          0.009535614 = score(doc=7554,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 7554, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7554)
      0.2 = coord(1/5)
    
    Abstract
    This paper discusses some problems encountered in hypermedia-based collaboration and reuse, and presents a conceptual framework to resolve these problems. Three suggestions are made based on the discussion: (1) extra organizational structures are necessary in shared hypermedia to support collaborative interactions; (2) an abstract schema is a key to capture the dynamic nature of the shared hypermedia; (3) an integration of the schema evolution approach and the workflow approach is recommended for an open system hypermedia teamwork support. The whole authoring environment is divided into several component spaces with particular respect to the Dexter Hypertext Reference Model. Not only can this separation reduce the overall complexitiy of working within such an environment, but it also conforms more closely with human cognitive needs in collaborative authoring and reuse activities
    Type
    a
  9. Chen, C.; Ibekwe-SanJuan, F.; Pinho, R.; Zhang, J.: ¬The impact of the sloan digital sky survey on astronomical research : the role of culture, identity, and international collaboration (2008) 0.00
    0.001155891 = product of:
      0.005779455 = sum of:
        0.005779455 = weight(_text_:a in 2275) [ClassicSimilarity], result of:
          0.005779455 = score(doc=2275,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10809815 = fieldWeight in 2275, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2275)
      0.2 = coord(1/5)
    
    Content
    We investigate the influence of culture and identity (geographic location) on the constitution of a specific research field. Using as case study the Sloan Digital Sky Survey (SDSS) project in the Astronomy field, we analyzed texts from bibliographic records of publications along three cultural and geographic axes: US only publications, non-US publications and international collaboration. Using three text mining systems (CiteSpace, TermWatch and PEx), we were able to automatically identify the topics specific to each cultural and geographic region as well as isolate the core research topics common to all geographic zones. The results tended to show that US-only and non-US research in this field shared more commonalities with international collaboration than with one another, thus indicating that the former two (US-only and non-US) research focused on rather distinct topics.
    Type
    a