Search (22 results, page 1 of 2)

  • × author_ss:"Ding, Y."
  • × theme_ss:"Informetrie"
  1. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.03
    0.027656192 = product of:
      0.06914048 = sum of:
        0.009535614 = weight(_text_:a in 4188) [ClassicSimilarity], result of:
          0.009535614 = score(doc=4188,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 4188, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4188)
        0.05960487 = sum of:
          0.015628971 = weight(_text_:information in 4188) [ClassicSimilarity], result of:
            0.015628971 = score(doc=4188,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.1920054 = fieldWeight in 4188, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4188)
          0.043975897 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
            0.043975897 = score(doc=4188,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.2708308 = fieldWeight in 4188, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4188)
      0.4 = coord(2/5)
    
    Abstract
    This article aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science. Weighted PageRank with citation and publication as weighted vectors were calculated on author citation networks. The results indicate that both popularity rank and prestige rank were highly correlated with the weighted PageRank. Principal component analysis was conducted to detect relationships among these different measures. For capturing prize winners within the IR field, prestige rank outperformed all the other measures
    Date
    22. 1.2011 13:02:21
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.236-245
    Type
    a
  2. Ding, Y.; Chowdhury, G.C.; Foo, S.: Bibliometric cartography of information retrieval research by using co-word analysis (2001) 0.01
    0.008627858 = product of:
      0.021569645 = sum of:
        0.008173384 = weight(_text_:a in 6487) [ClassicSimilarity], result of:
          0.008173384 = score(doc=6487,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 6487, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=6487)
        0.013396261 = product of:
          0.026792523 = sum of:
            0.026792523 = weight(_text_:information in 6487) [ClassicSimilarity], result of:
              0.026792523 = score(doc=6487,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3291521 = fieldWeight in 6487, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6487)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Information processing and management. 37(2001) no.6, S.817-842
    Type
    a
  3. He, B.; Ding, Y.; Ni, C.: Mining enriched contextual information of scientific collaboration : a meso perspective (2011) 0.01
    0.007471291 = product of:
      0.018678227 = sum of:
        0.009010308 = weight(_text_:a in 4444) [ClassicSimilarity], result of:
          0.009010308 = score(doc=4444,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1685276 = fieldWeight in 4444, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4444)
        0.009667919 = product of:
          0.019335838 = sum of:
            0.019335838 = weight(_text_:information in 4444) [ClassicSimilarity], result of:
              0.019335838 = score(doc=4444,freq=12.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23754507 = fieldWeight in 4444, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4444)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Studying scientific collaboration using coauthorship networks has attracted much attention in recent years. How and in what context two authors collaborate remain among the major questions. Previous studies, however, have focused on either exploring the global topology of coauthorship networks (macro perspective) or ranking the impact of individual authors (micro perspective). Neither of them has provided information on the context of the collaboration between two specific authors, which may potentially imply rich socioeconomic, disciplinary, and institutional information on collaboration. Different from the macro perspective and micro perspective, this article proposes a novel method (meso perspective) to analyze scientific collaboration, in which a contextual subgraph is extracted as the unit of analysis. A contextual subgraph is defined as a small subgraph of a large-scale coauthorship network that captures relationship and context between two coauthors. This method is applied to the field of library and information science. Topological properties of all the subgraphs in four time spans are investigated, including size, average degree, clustering coefficient, and network centralization. Results show that contextual subgprahs capture useful contextual information on two authors' collaboration.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.5, S.831-845
    Type
    a
  4. Milojevic, S.; Sugimoto, C.R.; Yan, E.; Ding, Y.: ¬The cognitive structure of Library and Information Science : analysis of article title words (2011) 0.01
    0.0072230585 = product of:
      0.018057646 = sum of:
        0.0076151006 = weight(_text_:a in 4608) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=4608,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 4608, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4608)
        0.010442546 = product of:
          0.020885091 = sum of:
            0.020885091 = weight(_text_:information in 4608) [ClassicSimilarity], result of:
              0.020885091 = score(doc=4608,freq=14.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.256578 = fieldWeight in 4608, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4608)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This study comprises a suite of analyses of words in article titles in order to reveal the cognitive structure of Library and Information Science (LIS). The use of title words to elucidate the cognitive structure of LIS has been relatively neglected. The present study addresses this gap by performing (a) co-word analysis and hierarchical clustering, (b) multidimensional scaling, and (c) determination of trends in usage of terms. The study is based on 10,344 articles published between 1988 and 2007 in 16 LIS journals. Methodologically, novel aspects of this study are: (a) its large scale, (b) removal of non-specific title words based on the "word concentration" measure (c) identification of the most frequent terms that include both single words and phrases, and (d) presentation of the relative frequencies of terms using "heatmaps". Conceptually, our analysis reveals that LIS consists of three main branches: the traditionally recognized library-related and information-related branches, plus an equally distinct bibliometrics/scientometrics branch. The three branches focus on: libraries, information, and science, respectively. In addition, our study identifies substructures within each branch. We also tentatively identify "information seeking behavior" as a branch that is establishing itself separate from the three main branches. Furthermore, we find that cognitive concepts in LIS evolve continuously, with no stasis since 1992. The most rapid development occurred between 1998 and 2001, influenced by the increased focus on the Internet. The change in the cognitive landscape is found to be driven by the emergence of new information technologies, and the retirement of old ones.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.10, S.1933-1953
    Type
    a
  5. Ding, Y.: Visualization of intellectual structure in information retrieval : author cocitation analysis (1998) 0.01
    0.00711762 = product of:
      0.01779405 = sum of:
        0.0067426977 = weight(_text_:a in 2792) [ClassicSimilarity], result of:
          0.0067426977 = score(doc=2792,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12611452 = fieldWeight in 2792, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2792)
        0.011051352 = product of:
          0.022102704 = sum of:
            0.022102704 = weight(_text_:information in 2792) [ClassicSimilarity], result of:
              0.022102704 = score(doc=2792,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27153665 = fieldWeight in 2792, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2792)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Reports results of a cocitation analysis study from the international retrieval research field from 1987 to 1997. Data was taken from Social SciSearch, via Dialog, and the top 40 authors were submitted to author cocitation analysis to yield the intellectual structure of information retrieval. The resulting multidimensional scaling map revealed: identifiable author groups for information retrieval; location of these groups with respect to each other; extend of centrality and peripherality of authors within groups, proximities of authors within groups and across group boundaries; and the meaning of the axes of the map. Factor analysis was used to reveal the extent of the authors' research areas and statistical routines included: ALSCAL; clustering analysis and factor analysis
    Source
    International forum on information and documentation. 23(1998) no.1, S.25-36
    Type
    a
  6. Yan, E.; Ding, Y.: Applying centrality measures to impact analysis : a coauthorship network analysis (2009) 0.01
    0.0069400403 = product of:
      0.0173501 = sum of:
        0.009535614 = weight(_text_:a in 3083) [ClassicSimilarity], result of:
          0.009535614 = score(doc=3083,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 3083, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3083)
        0.007814486 = product of:
          0.015628971 = sum of:
            0.015628971 = weight(_text_:information in 3083) [ClassicSimilarity], result of:
              0.015628971 = score(doc=3083,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1920054 = fieldWeight in 3083, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3083)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Many studies on coauthorship networks focus on network topology and network statistical mechanics. This article takes a different approach by studying micro-level network properties with the aim of applying centrality measures to impact analysis. Using coauthorship data from 16 journals in the field of library and information science (LIS) with a time span of 20 years (1988-2007), we construct an evolving coauthorship network and calculate four centrality measures (closeness centrality, betweenness centrality, degree centrality, and PageRank) for authors in this network. We find that the four centrality measures are significantly correlated with citation counts. We also discuss the usability of centrality measures in author ranking and suggest that centrality measures can be useful indicators for impact analysis.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.10, S.2107-2118
    Type
    a
  7. Yan, E.; Ding, Y.: Discovering author impact : a PageRank perspective (2011) 0.01
    0.0068851607 = product of:
      0.017212901 = sum of:
        0.010897844 = weight(_text_:a in 2704) [ClassicSimilarity], result of:
          0.010897844 = score(doc=2704,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20383182 = fieldWeight in 2704, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2704)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 2704) [ClassicSimilarity], result of:
              0.012630116 = score(doc=2704,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 2704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2704)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This article provides an alternative perspective for measuring author impact by applying PageRank algorithm to a coauthorship network. A weighted PageRank algorithm considering citation and coauthorship network topology is proposed. We test this algorithm under different damping factors by evaluating author impact in the informetrics research community. In addition, we also compare this weighted PageRank with the h-index, citation, and program committee (PC) membership of the International Society for Scientometrics and Informetrics (ISSI) conferences. Findings show that this weighted PageRank algorithm provides reliable results in measuring author impact.
    Source
    Information processing and management. 47(2011) no.1, S.125-134
    Type
    a
  8. Yan, E.; Ding, Y.: Weighted citation : an indicator of an article's prestige (2010) 0.01
    0.006654713 = product of:
      0.016636781 = sum of:
        0.00770594 = weight(_text_:a in 3705) [ClassicSimilarity], result of:
          0.00770594 = score(doc=3705,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14413087 = fieldWeight in 3705, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=3705)
        0.0089308405 = product of:
          0.017861681 = sum of:
            0.017861681 = weight(_text_:information in 3705) [ClassicSimilarity], result of:
              0.017861681 = score(doc=3705,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21943474 = fieldWeight in 3705, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3705)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The authors propose using the technique of weighted citation to measure an article's prestige. The technique allocates a different weight to each reference by taking into account the impact of citing journals and citation time intervals. Weightedcitation captures prestige, whereas citation counts capture popularity. They compare the value variances for popularity and prestige for articles published in the Journal of the American Society for Information Science and Technology from 1998 to 2007, and find that the majority have comparable status.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1635-1643
    Type
    a
  9. Sugimoto, C.R.; Li, D.; Russell, T.G.; Finlay, S.C.; Ding, Y.: ¬The shifting sands of disciplinary development : analyzing North American Library and Information Science dissertations using latent Dirichlet allocation (2011) 0.01
    0.0061035035 = product of:
      0.015258758 = sum of:
        0.0048162127 = weight(_text_:a in 4143) [ClassicSimilarity], result of:
          0.0048162127 = score(doc=4143,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.090081796 = fieldWeight in 4143, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4143)
        0.010442546 = product of:
          0.020885091 = sum of:
            0.020885091 = weight(_text_:information in 4143) [ClassicSimilarity], result of:
              0.020885091 = score(doc=4143,freq=14.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.256578 = fieldWeight in 4143, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4143)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This work identifies changes in dominant topics in library and information science (LIS) over time, by analyzing the 3,121 doctoral dissertations completed between 1930 and 2009 at North American Library and Information Science programs. The authors utilize latent Dirichlet allocation (LDA) to identify latent topics diachronically and to identify representative dissertations of those topics. The findings indicate that the main topics in LIS have changed substantially from those in the initial period (1930-1969) to the present (2000-2009). However, some themes occurred in multiple periods, representing core areas of the field: library history occurred in the first two periods; citation analysis in the second and third periods; and information-seeking behavior in the fourth and last period. Two topics occurred in three of the five periods: information retrieval and information use. One of the notable changes in the topics was the diminishing use of the word library (and related terms). This has implications for the provision of doctoral education in LIS. This work is compared to other earlier analyses and provides validation for the use of LDA in topic analysis of a discipline.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.1, S.185-204
    Type
    a
  10. Ni, C.; Shaw, D.; Lind, S.M.; Ding, Y.: Journal impact and proximity : an assessment using bibliographic features (2013) 0.01
    0.005948606 = product of:
      0.014871514 = sum of:
        0.008173384 = weight(_text_:a in 686) [ClassicSimilarity], result of:
          0.008173384 = score(doc=686,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 686, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=686)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 686) [ClassicSimilarity], result of:
              0.013396261 = score(doc=686,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 686, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=686)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Journals in the Information Science & Library Science category of Journal Citation Reports (JCR) were compared using both bibliometric and bibliographic features. Data collected covered journal impact factor (JIF), number of issues per year, number of authors per article, longevity, editorial board membership, frequency of publication, number of databases indexing the journal, number of aggregators providing full-text access, country of publication, JCR categories, Dewey decimal classification, and journal statement of scope. Three features significantly correlated with JIF: number of editorial board members and number of JCR categories in which a journal is listed correlated positively; journal longevity correlated negatively with JIF. Coword analysis of journal descriptions provided a proximity clustering of journals, which differed considerably from the clusters based on editorial board membership. Finally, a multiple linear regression model was built to predict the JIF based on all the collected bibliographic features.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.4, S.802-817
    Type
    a
  11. Zhai, Y; Ding, Y.; Wang, F.: Measuring the diffusion of an innovation : a citation analysis (2018) 0.01
    0.005898641 = product of:
      0.014746603 = sum of:
        0.0100103095 = weight(_text_:a in 4116) [ClassicSimilarity], result of:
          0.0100103095 = score(doc=4116,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18723148 = fieldWeight in 4116, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4116)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 4116) [ClassicSimilarity], result of:
              0.009472587 = score(doc=4116,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 4116, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4116)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Innovations transform our research traditions and become the driving force to advance individual, group, and social creativity. Meanwhile, interdisciplinary research is increasingly being promoted as a route to advance the complex challenges we face as a society. In this paper, we use Latent Dirichlet Allocation (LDA) citation as a proxy context for the diffusion of an innovation. With an analysis of topic evolution, we divide the diffusion process into five stages: testing and evaluation, implementation, improvement, extending, and fading. Through a correlation analysis of topic and subject, we show the application of LDA in different subjects. We also reveal the cross-boundary diffusion between different subjects based on the analysis of the interdisciplinary studies. The results show that as LDA is transferred into different areas, the adoption of each subject is relatively adjacent to those with similar research interests. Our findings further support researchers' understanding of the impact formation of innovation.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.3, S.368-379
    Type
    a
  12. Ding, Y.: Scholarly communication and bibliometrics : Part 1: The scholarly communication model: literature review (1998) 0.01
    0.00588199 = product of:
      0.014704974 = sum of:
        0.0068111527 = weight(_text_:a in 3995) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=3995,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 3995, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=3995)
        0.007893822 = product of:
          0.015787644 = sum of:
            0.015787644 = weight(_text_:information in 3995) [ClassicSimilarity], result of:
              0.015787644 = score(doc=3995,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19395474 = fieldWeight in 3995, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3995)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    International forum on information and documentation. 23(1998) no.2, S.20-29
    Type
    a
  13. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.01
    0.005549766 = product of:
      0.013874415 = sum of:
        0.009138121 = weight(_text_:a in 1202) [ClassicSimilarity], result of:
          0.009138121 = score(doc=1202,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 1202, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1202)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 1202) [ClassicSimilarity], result of:
              0.009472587 = score(doc=1202,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 1202, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Bioinformatics is a fast-growing field based on the optimal use of "big data" gathered in genomic, proteomics, and functional genomics research. In this paper, we conduct a comprehensive and in-depth bibliometric analysis of the field of bioinformatics by extracting citation data from PubMed Central full-text. Citation data for the period 2000 to 2011, comprising 20,869 papers with 546,245 citations, was used to evaluate the productivity and influence of this emerging field. Four measures were used to identify productivity; most productive authors, most productive countries, most productive organizations, and most popular subject terms. Research impact was analyzed based on the measures of most cited papers, most cited authors, emerging stars, and leading organizations. Results show the overall trends between the periods 2000 to 2003 and 2004 to 2007 were dissimilar, while trends between the periods 2004 to 2007 and 2008 to 2011 were similar. In addition, the field of bioinformatics has undergone a significant shift, co-evolving with other biomedical disciplines.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.352-371
    Type
    a
  14. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.01
    0.005431735 = product of:
      0.013579337 = sum of:
        0.009632425 = weight(_text_:a in 4445) [ClassicSimilarity], result of:
          0.009632425 = score(doc=4445,freq=16.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18016359 = fieldWeight in 4445, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4445)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 4445) [ClassicSimilarity], result of:
              0.007893822 = score(doc=4445,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 4445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4445)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Citations in scientific literature are important both for tracking the historical development of scientific ideas and for forecasting research trends. However, the diffusion mechanisms underlying the citation process remain poorly understood, despite the frequent and longstanding use of citation counts for assessment purposes within the scientific community. Here, we extend the study of citation dynamics to a more general diffusion process to understand how citation growth associates with different diffusion patterns. Using a classic diffusion model, we quantify and illustrate specific diffusion mechanisms which have been proven to exert a significant impact on the growth and decay of citation counts. Experiments reveal a positive relation between the "low p and low q" pattern and high scientific impact. A sharp citation peak produced by rapid change of citation counts, however, has a negative effect on future impact. In addition, we have suggested a simple indicator, saturation level, to roughly estimate an individual article's current stage in the life cycle and its potential to attract future attention. The proposed approach can also be extended to higher levels of aggregation (e.g., individual scientists, journals, institutions), providing further insights into the practice of scientific evaluation.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.10, S.1271-1282
    Type
    a
  15. Zhang, C.; Bu, Y.; Ding, Y.; Xu, J.: Understanding scientific collaboration : homophily, transitivity, and preferential attachment (2018) 0.01
    0.0051638708 = product of:
      0.012909677 = sum of:
        0.008173384 = weight(_text_:a in 4011) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4011,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4011, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4011)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 4011) [ClassicSimilarity], result of:
              0.009472587 = score(doc=4011,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 4011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Scientific collaboration is essential in solving problems and breeding innovation. Coauthor network analysis has been utilized to study scholars' collaborations for a long time, but these studies have not simultaneously taken different collaboration features into consideration. In this paper, we present a systematic approach to analyze the differences in possibilities that two authors will cooperate as seen from the effects of homophily, transitivity, and preferential attachment. Exponential random graph models (ERGMs) are applied in this research. We find that different types of publications one author has written play diverse roles in his/her collaborations. An author's tendency to form new collaborations with her/his coauthors' collaborators is strong, where the more coauthors one author had before, the more new collaborators he/she will attract. We demonstrate that considering the authors' attributes and homophily effects as well as the transitivity and preferential attachment effects of the coauthorship network in which they are embedded helps us gain a comprehensive understanding of scientific collaboration.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.1, S.72-86
    Type
    a
  16. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.00
    0.0049910345 = product of:
      0.012477586 = sum of:
        0.005779455 = weight(_text_:a in 3161) [ClassicSimilarity], result of:
          0.005779455 = score(doc=3161,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10809815 = fieldWeight in 3161, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3161)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 3161) [ClassicSimilarity], result of:
              0.013396261 = score(doc=3161,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 3161, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3161)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.11, S.2229-2243
    Type
    a
  17. Bu, Y.; Ding, Y.; Xu, J.; Liang, X.; Gao, G.; Zhao, Y.: Understanding success through the diversity of collaborators and the milestone of career (2018) 0.00
    0.004624805 = product of:
      0.011562012 = sum of:
        0.0076151006 = weight(_text_:a in 4012) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=4012,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 4012, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4012)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 4012) [ClassicSimilarity], result of:
              0.007893822 = score(doc=4012,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 4012, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4012)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Scientific collaboration is vital to many fields, and it is common to see scholars seek out experienced researchers or experts in a domain with whom they can share knowledge, experience, and resources. To explore the diversity of research collaborations, this article performs a temporal analysis on the scientific careers of researchers in the field of computer science. Specifically, we analyze collaborators using 2 indicators: the research topic diversity, measured by the Author-Conference-Topic model and cosine, and the impact diversity, measured by the normalized standard deviation of h-indices. We find that the collaborators of high-impact researchers tend to study diverse research topics and have diverse h-indices. Moreover, by setting PhD graduation as an important milestone in researchers' careers, we examine several indicators related to scientific collaboration and their effects on a career. The results show that collaborating with authoritative authors plays an important role prior to a researcher's PhD graduation, but working with non-authoritative authors carries more weight after PhD graduation.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.1, S.87-97
    Type
    a
  18. Bu, Y.; Ding, Y.; Liang, X.; Murray, D.S.: Understanding persistent scientific collaboration (2018) 0.00
    0.004624805 = product of:
      0.011562012 = sum of:
        0.0076151006 = weight(_text_:a in 4176) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=4176,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 4176, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4176)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 4176) [ClassicSimilarity], result of:
              0.007893822 = score(doc=4176,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 4176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4176)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Common sense suggests that persistence is key to success. In academia, successful researchers have been found more likely to be persistent in publishing, but little attention has been given to how persistence in maintaining collaborative relationships affects career success. This paper proposes a new bibliometric understanding of persistence that considers the prominent role of collaboration in contemporary science. Using this perspective, we analyze the relationship between persistent collaboration and publication quality along several dimensions: degree of transdisciplinarity, difference in coauthor's scientific age and their scientific impact, and research-team size. Contrary to traditional wisdom, our results show that persistent scientific collaboration does not always result in high-quality papers. We find that the most persistent transdisciplinary collaboration tends to output high-impact publications, and that those coauthors with diverse scientific impact or scientific ages benefit from persistent collaboration more than homogeneous compositions. We also find that researchers persistently working in large groups tend to publish lower-impact papers. These results contradict the colloquial understanding of collaboration in academia and paint a more nuanced picture of how persistent scientific collaboration relates to success, a picture that can provide valuable insights to researchers, funding agencies, policy makers, and mentor-mentee program directors. Moreover, the methodology in this study showcases a feasible approach to measure persistent collaboration.
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.3, S.438-448
    Type
    a
  19. Liu, M.; Bu, Y.; Chen, C.; Xu, J.; Li, D.; Leng, Y.; Freeman, R.B.; Meyer, E.T.; Yoon, W.; Sung, M.; Jeong, M.; Lee, J.; Kang, J.; Min, C.; Zhai, Y.; Song, M.; Ding, Y.: Pandemics are catalysts of scientific novelty : evidence from COVID-19 (2022) 0.00
    0.004624805 = product of:
      0.011562012 = sum of:
        0.0076151006 = weight(_text_:a in 633) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=633,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 633, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=633)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 633) [ClassicSimilarity], result of:
              0.007893822 = score(doc=633,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=633)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease. During COVID-19, papers with more first-time collaboration were found to be more novel and international collaboration did not hamper novelty as it had done in the normal periods. The findings suggest the necessity of reaching out for distant resources and the importance of maintaining a collaborative scientific community beyond nationalism during a pandemic.
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.8, S.1065-1078
    Type
    a
  20. Li, R.; Chambers, T.; Ding, Y.; Zhang, G.; Meng, L.: Patent citation analysis : calculating science linkage based on citing motivation (2014) 0.00
    0.004303226 = product of:
      0.010758064 = sum of:
        0.0068111527 = weight(_text_:a in 1257) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=1257,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 1257, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1257)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 1257) [ClassicSimilarity], result of:
              0.007893822 = score(doc=1257,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 1257, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1257)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Science linkage is a widely used patent bibliometric indicator to measure patent linkage to scientific research based on the frequency of citations to scientific papers within the patent. Science linkage is also regarded as noisy because the subject of patent citation behavior varies from inventors/applicants to examiners. In order to identify and ultimately reduce this noise, we analyzed the different citing motivations of examiners and inventors/applicants. We built 4 hypotheses based upon our study of patent law, the unique economic nature of a patent, and a patent citation's market effect. To test our hypotheses, we conducted an expert survey based on our science linkage calculation in the domain of catalyst from U.S. patent data (2006-2009) over 3 types of citations: self-citation by inventor/applicant, non-self-citation by inventor/applicant, and citation by examiner. According to our results, evaluated by domain experts, we conclude that the non-self-citation by inventor/applicant is quite noisy and cannot indicate science linkage and that self-citation by inventor/applicant, although limited, is more appropriate for understanding science linkage.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.5, S.1007-1017
    Type
    a