Search (34 results, page 1 of 2)

  • × author_ss:"Jansen, B.J."
  1. Zhang, Y.; Jansen, B.J.; Spink, A.: Identification of factors predicting clickthrough in Web searching using neural network analysis (2009) 0.02
    0.022521732 = product of:
      0.056304332 = sum of:
        0.009138121 = weight(_text_:a in 2742) [ClassicSimilarity], result of:
          0.009138121 = score(doc=2742,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 2742, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2742)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 2742) [ClassicSimilarity], result of:
            0.009472587 = score(doc=2742,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 2742, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=2742)
          0.037693623 = weight(_text_:22 in 2742) [ClassicSimilarity], result of:
            0.037693623 = score(doc=2742,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 2742, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2742)
      0.4 = coord(2/5)
    
    Abstract
    In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing.
    Date
    22. 3.2009 17:49:11
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.3, S.557-570
    Type
    a
  2. Reddy, M.C.; Jansen, B.J.: ¬A model for understanding collaborative information behavior in context : a study of two healthcare teams (2008) 0.01
    0.010847423 = product of:
      0.027118558 = sum of:
        0.008173384 = weight(_text_:a in 2033) [ClassicSimilarity], result of:
          0.008173384 = score(doc=2033,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 2033, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2033)
        0.018945174 = product of:
          0.03789035 = sum of:
            0.03789035 = weight(_text_:information in 2033) [ClassicSimilarity], result of:
              0.03789035 = score(doc=2033,freq=32.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.46549138 = fieldWeight in 2033, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2033)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Collaborative information behavior is an essential aspect of organizational work; however, we have very limited understanding of this behavior. Most models of information behavior focus on the individual seeker of information. In this paper, we report the results from two empirical studies that investigate aspects of collaborative information behavior in organizational settings. From these studies, we found that collaborative information behavior differs from individual information behavior with respect to how individuals interact with each other, the complexity of the information need, and the role of information technology. There are specific triggers for transitioning from individual to collaborative information behavior, including lack of domain expertise. The information retrieval technologies used affect collaborative information behavior by acting as important supporting mechanisms. From these results and prior work, we develop a model of collaborative information behavior along the axes of participant behavior, situational elements, and contextual triggers. We also present characteristics of collaborative information system including search, chat, and sharing. We discuss implications for the design of collaborative information retrieval systems and directions for future work.
    Source
    Information processing and management. 44(2008) no.1, S.256-273
    Type
    a
  3. Jansen, B.J.; Rieh, S.Y.: ¬The seventeen theoretical constructs of information searching and information retrieval (2010) 0.01
    0.009832155 = product of:
      0.024580387 = sum of:
        0.008173384 = weight(_text_:a in 3690) [ClassicSimilarity], result of:
          0.008173384 = score(doc=3690,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 3690, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3690)
        0.016407004 = product of:
          0.032814007 = sum of:
            0.032814007 = weight(_text_:information in 3690) [ClassicSimilarity], result of:
              0.032814007 = score(doc=3690,freq=24.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.40312737 = fieldWeight in 3690, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3690)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this article, we identify, compare, and contrast theoretical constructs for the fields of information searching and information retrieval to emphasize the uniqueness of and synergy between the fields. Theoretical constructs are the foundational elements that underpin a field's core theories, models, assumptions, methodologies, and evaluation metrics. We provide a framework to compare and contrast the theoretical constructs in the fields of information searching and information retrieval using intellectual perspective and theoretical orientation. The intellectual perspectives are information searching, information retrieval, and cross-cutting; and the theoretical orientations are information, people, and technology. Using this framework, we identify 17 significant constructs in these fields contrasting the differences and comparing the similarities. We discuss the impact of the interplay among these constructs for moving research forward within both fields. Although there is tension between the fields due to contradictory constructs, an examination shows a trend toward convergence. We discuss the implications for future research within the information searching and information retrieval fields.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1517-1534
    Type
    a
  4. Jansen, B.J.; Spink, A.; Saracevic, T.: Real life, real users and real needs : a study and analysis of users queries on the Web (2000) 0.01
    0.009451722 = product of:
      0.023629304 = sum of:
        0.014156716 = weight(_text_:a in 411) [ClassicSimilarity], result of:
          0.014156716 = score(doc=411,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.26478532 = fieldWeight in 411, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=411)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 411) [ClassicSimilarity], result of:
              0.018945174 = score(doc=411,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 411, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=411)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Information processing and management. 36(2000) no.2, S.207-227
    Type
    a
  5. Spink, A.; Park, M.; Jansen, B.J.; Pedersen, J.: Elicitation and use of relevance feedback information (2006) 0.01
    0.008895924 = product of:
      0.02223981 = sum of:
        0.011797264 = weight(_text_:a in 967) [ClassicSimilarity], result of:
          0.011797264 = score(doc=967,freq=24.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22065444 = fieldWeight in 967, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=967)
        0.010442546 = product of:
          0.020885091 = sum of:
            0.020885091 = weight(_text_:information in 967) [ClassicSimilarity], result of:
              0.020885091 = score(doc=967,freq=14.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.256578 = fieldWeight in 967, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=967)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    A user's single session with a Web search engine or information retrieval (IR) system may consist of seeking information on single or multiple topics, and switch between tasks or multitasking information behavior. Most Web search sessions consist of two queries of approximately two words. However, some Web search sessions consist of three or more queries. We present findings from two studies. First, a study of two-query search sessions on the AltaVista Web search engine, and second, a study of three or more query search sessions on the AltaVista Web search engine. We examine the degree of multitasking search and information task switching during these two sets of AltaVista Web search sessions. A sample of two-query and three or more query sessions were filtered from AltaVista transaction logs from 2002 and qualitatively analyzed. Sessions ranged in duration from less than a minute to a few hours. Findings include: (1) 81% of two-query sessions included multiple topics, (2) 91.3% of three or more query sessions included multiple topics, (3) there are a broad variety of topics in multitasking search sessions, and (4) three or more query sessions sometimes contained frequent topic changes. Multitasking is found to be a growing element in Web searching. This paper proposes an approach to interactive information retrieval (IR) contextually within a multitasking framework. The implications of our findings for Web design and further research are discussed.
    Source
    Information processing and management. 42(2006) no.1, S.264-275
    Type
    a
  6. Wolfram, D.; Spink, A.; Jansen, B.J.; Saracevic, T.: Vox populi : the public searching of the Web (2001) 0.01
    0.008412599 = product of:
      0.021031497 = sum of:
        0.01155891 = weight(_text_:a in 6949) [ClassicSimilarity], result of:
          0.01155891 = score(doc=6949,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 6949, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=6949)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 6949) [ClassicSimilarity], result of:
              0.018945174 = score(doc=6949,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 6949, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6949)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.12, S.1073-1074
    Type
    a
  7. Jansen, B.J.; Spink, A.: ¬An analysis of Web searching by European Allthe Web.com users (2005) 0.01
    0.007837976 = product of:
      0.019594941 = sum of:
        0.010769378 = weight(_text_:a in 1015) [ClassicSimilarity], result of:
          0.010769378 = score(doc=1015,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20142901 = fieldWeight in 1015, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1015)
        0.008825562 = product of:
          0.017651124 = sum of:
            0.017651124 = weight(_text_:information in 1015) [ClassicSimilarity], result of:
              0.017651124 = score(doc=1015,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21684799 = fieldWeight in 1015, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1015)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The Web has become a worldwide source of information and a mainstream business tool. It is changing the way people conduct the daily business of their lives. As these changes are occurring, we need to understand what Web searching trends are emerging within the various global regions. What are the regional differences and trends in Web searching, if any? What is the effectiveness of Web search engines as providers of information? As part of a body of research studying these questions, we have analyzed two data sets collected from queries by mainly European users submitted to AlltheWeb.com on 6 February 2001 and 28 May 2002. AlltheWeb.com is a major and highly rated European search engine. Each data set contains approximately a million queries submitted by over 200,000 users and spans a 24-h period. This longitudinal benchmark study shows that European Web searching is evolving in certain directions. There was some decline in query length, with extremely simple queries. European search topics are broadening, with a notable percentage decline in sexual and pornographic searching. The majority of Web searchers view fewer than five Web documents, spending only seconds on a Web document. Approximately 50% of the Web documents viewed by these European users were topically relevant. We discuss the implications for Web information systems and information content providers.
    Source
    Information processing and management. 41(2005) no.2, S.361-382
    Type
    a
  8. Jansen, B.J.; Booth, D.L.; Smith, B.K.: Using the taxonomy of cognitive learning to model online searching (2009) 0.01
    0.00780219 = product of:
      0.019505475 = sum of:
        0.008341924 = weight(_text_:a in 4223) [ClassicSimilarity], result of:
          0.008341924 = score(doc=4223,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 4223, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4223)
        0.011163551 = product of:
          0.022327103 = sum of:
            0.022327103 = weight(_text_:information in 4223) [ClassicSimilarity], result of:
              0.022327103 = score(doc=4223,freq=16.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27429342 = fieldWeight in 4223, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4223)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this research, we investigated whether a learning process has unique information searching characteristics. The results of this research show that information searching is a learning process with unique searching characteristics specific to particular learning levels. In a laboratory experiment, we studied the searching characteristics of 72 participants engaged in 426 searching tasks. We classified the searching tasks according to Anderson and Krathwohl's taxonomy of the cognitive learning domain. Research results indicate that applying and analyzing, the middle two of the six categories, generally take the most searching effort in terms of queries per session, topics searched per session, and total time searching. Interestingly, the lowest two learning categories, remembering and understanding, exhibit searching characteristics similar to the highest order learning categories of evaluating and creating. Our results suggest the view of Web searchers having simple information needs may be incorrect. Instead, we discovered that users applied simple searching expressions to support their higher-level information needs. It appears that searchers rely primarily on their internal knowledge for evaluating and creating information needs, using search primarily for fact checking and verification. Overall, results indicate that a learning theory may better describe the information searching process than more commonly used paradigms of decision making or problem solving. The learning style of the searcher does have some moderating effect on exhibited searching characteristics. The implication of this research is that rather than solely addressing a searcher's expressed information need, searching systems can also address the underlying learning need of the user.
    Source
    Information processing and management. 45(2009) no.6, S.643-663
    Type
    a
  9. Jansen, B.J.; Spink, A.; Pedersen, J.: ¬A temporal comparison of AItaVista Web searching (2005) 0.01
    0.0074442835 = product of:
      0.018610708 = sum of:
        0.009138121 = weight(_text_:a in 3454) [ClassicSimilarity], result of:
          0.009138121 = score(doc=3454,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 3454, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3454)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 3454) [ClassicSimilarity], result of:
              0.018945174 = score(doc=3454,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 3454, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3454)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Major Web search engines, such as AItaVista, are essential tools in the quest to locate online information. This article reports research that used transaction log analysis to examine the characteristics and changes in AItaVista Web searching that occurred from 1998 to 2002. The research questions we examined are (1) What are the changes in AItaVista Web searching from 1998 to 2002? (2) What are the current characteristics of AItaVista searching, including the duration and frequency of search sessions? (3) What changes in the information needs of AItaVista users occurred between 1998 and 2002? The results of our research show (1) a move toward more interactivity with increases in session and query length, (2) with 70% of session durations at 5 minutes or less, the frequency of interaction is increasing, but it is happening very quickly, and (3) a broadening range of Web searchers' information needs, with the most frequent terms accounting for less than 1% of total term usage. We discuss the implications of these findings for the development of Web search engines.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.6, S.559-570
    Type
    a
  10. Jansen, B.J.: Seeking and implementing automated assistance during the search process (2005) 0.01
    0.0069366493 = product of:
      0.017341623 = sum of:
        0.009138121 = weight(_text_:a in 1055) [ClassicSimilarity], result of:
          0.009138121 = score(doc=1055,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 1055, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1055)
        0.008203502 = product of:
          0.016407004 = sum of:
            0.016407004 = weight(_text_:information in 1055) [ClassicSimilarity], result of:
              0.016407004 = score(doc=1055,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.20156369 = fieldWeight in 1055, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1055)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Searchers seldom make use of the advanced searching features that could improve the quality of the search process because they do not know these features exist, do not understand how to use them, or do not believe they are effective or efficient. Information retrieval systems offering automated assistance could greatly improve search effectiveness by suggesting or implementing assistance automatically. A critical issue in designing such systems is determining when the system should intervene in the search process. In this paper, we report the results of an empirical study analyzing when during the search process users seek automated searching assistance from the system and when they implement the assistance. We designed a fully functional, automated assistance application and conducted a study with 30 subjects interacting with the system. The study used a 2G TREC document collection and TREC topics. Approximately 50% of the subjects sought assistance, and over 80% of those implemented that assistance. Results from the evaluation indicate that users are willing to accept automated assistance during the search process, especially after viewing results and locating relevant documents. We discuss implications for interactive information retrieval system design and directions for future research.
    Source
    Information processing and management. 41(2005) no.4, S.909-928
    Type
    a
  11. Spink, A.; Jansen, B.J.; Pedersen , J.: Searching for people on Web search engines (2004) 0.01
    0.006866995 = product of:
      0.017167486 = sum of:
        0.008341924 = weight(_text_:a in 4429) [ClassicSimilarity], result of:
          0.008341924 = score(doc=4429,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 4429, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4429)
        0.008825562 = product of:
          0.017651124 = sum of:
            0.017651124 = weight(_text_:information in 4429) [ClassicSimilarity], result of:
              0.017651124 = score(doc=4429,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21684799 = fieldWeight in 4429, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4429)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The Web is a communication and information technology that is often used for the distribution and retrieval of personal information. Many people and organizations mount Web sites containing large amounts of information on individuals, particularly about celebrities. However, limited studies have examined how people search for information on other people, using personal names, via Web search engines. Explores the nature of personal name searching on Web search engines. The specific research questions addressed in the study are: "Do personal names form a major part of queries to Web search engines?"; "What are the characteristics of personal name Web searching?"; and "How effective is personal name Web searching?". Random samples of queries from two Web search engines were analyzed. The findings show that: personal name searching is a common but not a major part of Web searching with few people seeking information on celebrities via Web search engines; few personal name queries include double quotations or additional identifying terms; and name searches on Alta Vista included more advanced search features relative to those on AlltheWeb.com. Discusses the implications of the findings for Web searching and search engines, and further research.
    Type
    a
  12. Koshman, S.; Spink, A.; Jansen, B.J.: Web searching on the Vivisimo search engine (2006) 0.01
    0.006540462 = product of:
      0.016351154 = sum of:
        0.010769378 = weight(_text_:a in 216) [ClassicSimilarity], result of:
          0.010769378 = score(doc=216,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20142901 = fieldWeight in 216, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=216)
        0.0055817757 = product of:
          0.011163551 = sum of:
            0.011163551 = weight(_text_:information in 216) [ClassicSimilarity], result of:
              0.011163551 = score(doc=216,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13714671 = fieldWeight in 216, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=216)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The application of clustering to Web search engine technology is a novel approach that offers structure to the information deluge often faced by Web searchers. Clustering methods have been well studied in research labs; however, real user searching with clustering systems in operational Web environments is not well understood. This article reports on results from a transaction log analysis of Vivisimo.com, which is a Web meta-search engine that dynamically clusters users' search results. A transaction log analysis was conducted on 2-week's worth of data collected from March 28 to April 4 and April 25 to May 2, 2004, representing 100% of site traffic during these periods and 2,029,734 queries overall. The results show that the highest percentage of queries contained two terms. The highest percentage of search sessions contained one query and was less than 1 minute in duration. Almost half of user interactions with clusters consisted of displaying a cluster's result set, and a small percentage of interactions showed cluster tree expansion. Findings show that 11.1% of search sessions were multitasking searches, and there are a broad variety of search topics in multitasking search sessions. Other searching interactions and statistics on repeat users of the search engine are reported. These results provide insights into search characteristics with a cluster-based Web search engine and extend research into Web searching trends.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.14, S.1875-1887
    Type
    a
  13. Jansen, B.J.; Pooch , U.: ¬A review of Web searching studies and a framework for future research (2001) 0.01
    0.0064290287 = product of:
      0.016072571 = sum of:
        0.008258085 = weight(_text_:a in 5186) [ClassicSimilarity], result of:
          0.008258085 = score(doc=5186,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 5186, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5186)
        0.007814486 = product of:
          0.015628971 = sum of:
            0.015628971 = weight(_text_:information in 5186) [ClassicSimilarity], result of:
              0.015628971 = score(doc=5186,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1920054 = fieldWeight in 5186, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5186)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Jansen and Pooch review three major search engine studies and compare them to three traditional search system studies and three OPAC search studies, to determine if user search characteristics differ. The web search engine studies indicate that most searchers use two, two search term queries per session, no boolean operators, and look only at the top ten items returned, while reporting the location of relevant information. In traditional search systems we find seven to 16 queries of six to nine terms, while about ten documents per session were viewed. The OPAC studies indicated two to five queries per session of two or less terms, with Boolean search about 1% and less than 50 documents viewed.
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.3, S.235-246
    Type
    a
  14. Jansen, B.J.; Booth, D.L.; Spink, A.: Determining the informational, navigational, and transactional intent of Web queries (2008) 0.01
    0.006219466 = product of:
      0.015548665 = sum of:
        0.010812371 = weight(_text_:a in 2091) [ClassicSimilarity], result of:
          0.010812371 = score(doc=2091,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20223314 = fieldWeight in 2091, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2091)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 2091) [ClassicSimilarity], result of:
              0.009472587 = score(doc=2091,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 2091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2091)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.
    Source
    Information processing and management. 44(2008) no.3, S.1251-1266
    Type
    a
  15. Ortiz-Cordova, A.; Jansen, B.J.: Classifying web search queries to identify high revenue generating customers (2012) 0.01
    0.006219466 = product of:
      0.015548665 = sum of:
        0.010812371 = weight(_text_:a in 279) [ClassicSimilarity], result of:
          0.010812371 = score(doc=279,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20223314 = fieldWeight in 279, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=279)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 279) [ClassicSimilarity], result of:
              0.009472587 = score(doc=279,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 279, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=279)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Traffic from search engines is important for most online businesses, with the majority of visitors to many websites being referred by search engines. Therefore, an understanding of this search engine traffic is critical to the success of these websites. Understanding search engine traffic means understanding the underlying intent of the query terms and the corresponding user behaviors of searchers submitting keywords. In this research, using 712,643 query keywords from a popular Spanish music website relying on contextual advertising as its business model, we use a k-means clustering algorithm to categorize the referral keywords with similar characteristics of onsite customer behavior, including attributes such as clickthrough rate and revenue. We identified 6 clusters of consumer keywords. Clusters range from a large number of users who are low impact to a small number of high impact users. We demonstrate how online businesses can leverage this segmentation clustering approach to provide a more tailored consumer experience. Implications are that businesses can effectively segment customers to develop better business models to increase advertising conversion rates.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.7, S.1426-1441
    Type
    a
  16. Jansen, B.J.; Resnick, M.: ¬An examination of searcher's perceptions of nonsponsored and sponsored links during ecommerce Web searching (2006) 0.01
    0.00588199 = product of:
      0.014704974 = sum of:
        0.0068111527 = weight(_text_:a in 221) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=221,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 221, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=221)
        0.007893822 = product of:
          0.015787644 = sum of:
            0.015787644 = weight(_text_:information in 221) [ClassicSimilarity], result of:
              0.015787644 = score(doc=221,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19395474 = fieldWeight in 221, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=221)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this article, we report results of an investigation into the effect of sponsored links on ecommerce information seeking on the Web. In this research, 56 participants each engaged in six ecommerce Web searching tasks. We extracted these tasks from the transaction log of a Web search engine, so they represent actual ecommerce searching information needs. Using 60 organic and 30 sponsored Web links, the quality of the Web search engine results was controlled by switching nonsponsored and sponsored links on half of the tasks for each participant. This allowed for investigating the bias toward sponsored links while controlling for quality of content. The study also investigated the relationship between searching self-efficacy, searching experience, types of ecommerce information needs, and the order of links on the viewing of sponsored links. Data included 2,453 interactions with links from result pages and 961 utterances evaluating these links. The results of the study indicate that there is a strong preference for nonsponsored links, with searchers viewing these results first more than 82% of the time. Searching self-efficacy and experience does not increase the likelihood of viewing sponsored links, and the order of the result listing does not appear to affect searcher evaluation of sponsored links. The implications for sponsored links as a long-term business model are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.14, S.1949-1961
    Type
    a
  17. Liu, Z.; Jansen, B.J.: ASK: A taxonomy of accuracy, social, and knowledge information seeking posts in social question and answering (2017) 0.01
    0.00588199 = product of:
      0.014704974 = sum of:
        0.0068111527 = weight(_text_:a in 3345) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=3345,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 3345, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3345)
        0.007893822 = product of:
          0.015787644 = sum of:
            0.015787644 = weight(_text_:information in 3345) [ClassicSimilarity], result of:
              0.015787644 = score(doc=3345,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19395474 = fieldWeight in 3345, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3345)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Many people turn to their social networks to find information through the practice of question and answering. We believe it is necessary to use different answering strategies based on the type of questions to accommodate the different information needs. In this research, we propose the ASK taxonomy that categorizes questions posted on social networking sites into three types according to the nature of the questioner's inquiry of accuracy, social, or knowledge. To automatically decide which answering strategy to use, we develop a predictive model based on ASK question types using question features from the perspectives of lexical, topical, contextual, and syntactic as well as answer features. By applying the classifier on an annotated data set, we present a comprehensive analysis to compare questions in terms of their word usage, topical interests, temporal and spatial restrictions, syntactic structure, and response characteristics. Our research results show that the three types of questions exhibited different characteristics in the way they are asked. Our automatic classification algorithm achieves an 83% correct labeling result, showing the value of the ASK taxonomy for the design of social question and answering systems.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.2, S.333-347
    Type
    a
  18. Jansen, B.J.; McNeese, M.D.: Evaluating the Effectiveness of and Patterns of Interactions With Automated Searching Assistance (2005) 0.01
    0.0057805413 = product of:
      0.014451353 = sum of:
        0.0076151006 = weight(_text_:a in 4815) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=4815,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 4815, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4815)
        0.006836252 = product of:
          0.013672504 = sum of:
            0.013672504 = weight(_text_:information in 4815) [ClassicSimilarity], result of:
              0.013672504 = score(doc=4815,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16796975 = fieldWeight in 4815, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4815)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    We report quantitative and qualitative results of an empirical evaluation to determine whether automated assistance improves searching performance and when searchers desire system intervention in the search process. Forty participants interacted with two fully functional information retrieval systems in a counterbalanced, within-participant study. The systems were identical in all respects except that one offered automated assistance and the other did not. The study used a client-side automated assistance application, an approximately 500,000-document Text REtrieval Conference content collection, and six topics. Results indicate that automated assistance can improve searching performance. However, the improvement is less dramatic than one might expect, with an approximately 20% performance increase, as measured by the number of userselected relevant documents. Concerning patterns of interaction, we identified 1,879 occurrences of searchersystem interactions and classified them into 9 major categories and 27 subcategories or states. Results indicate that there are predictable patterns of times when searchers desire and implement searching assistance. The most common three-state pattern is Execute Query-View Results: With Scrolling-View Assistance. Searchers appear receptive to automated assistance; there is a 71% implementation rate. There does not seem to be a correlation between the use of assistance and previous searching performance. We discuss the implications for the design of information retrieval systems and future research directions.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.14, S.1480-1503
    Type
    a
  19. Ortiz-Cordova, A.; Yang, Y.; Jansen, B.J.: External to internal search : associating searching on search engines with searching on sites (2015) 0.01
    0.0056654564 = product of:
      0.014163641 = sum of:
        0.01021673 = weight(_text_:a in 2675) [ClassicSimilarity], result of:
          0.01021673 = score(doc=2675,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19109234 = fieldWeight in 2675, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2675)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 2675) [ClassicSimilarity], result of:
              0.007893822 = score(doc=2675,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 2675, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2675)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    We analyze the transitions from external search, searching on web search engines, to internal search, searching on websites. We categorize 295,571 search episodes composed of a query submitted to web search engines and the subsequent queries submitted to a single website search by the same users. There are a total of 1,136,390 queries from all searches, of which 295,571 are external search queries and 840,819 are internal search queries. We algorithmically classify queries into states and then use n-grams to categorize search patterns. We cluster the searching episodes into major patterns and identify the most commonly occurring, which are: (1) Explorers (43% of all patterns) with a broad external search query and then broad internal search queries, (2) Navigators (15%) with an external search query containing a URL component and then specific internal search queries, and (3) Shifters (15%) with a different, seemingly unrelated, query types when transitioning from external to internal search. The implications of this research are that external search and internal search sessions are part of a single search episode and that online businesses can leverage these search episodes to more effectively target potential customers.
    Source
    Information processing and management. 51(2015) no.5, S.718-736
    Type
    a
  20. Tjondronegoro, D.; Spink, A.; Jansen, B.J.: ¬A study and comparison of multimedia Web searching : 1997-2006 (2009) 0.01
    0.00556948 = product of:
      0.0139237 = sum of:
        0.008341924 = weight(_text_:a in 3090) [ClassicSimilarity], result of:
          0.008341924 = score(doc=3090,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 3090, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3090)
        0.0055817757 = product of:
          0.011163551 = sum of:
            0.011163551 = weight(_text_:information in 3090) [ClassicSimilarity], result of:
              0.011163551 = score(doc=3090,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13714671 = fieldWeight in 3090, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3090)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Searching for multimedia is an important activity for users of Web search engines. Studying user's interactions with Web search engine multimedia buttons, including image, audio, and video, is important for the development of multimedia Web search systems. This article provides results from a Weblog analysis study of multimedia Web searching by Dogpile users in 2006. The study analyzes the (a) duration, size, and structure of Web search queries and sessions; (b) user demographics; (c) most popular multimedia Web searching terms; and (d) use of advanced Web search techniques including Boolean and natural language. The current study findings are compared with results from previous multimedia Web searching studies. The key findings are: (a) Since 1997, image search consistently is the dominant media type searched followed by audio and video; (b) multimedia search duration is still short (>50% of searching episodes are <1 min), using few search terms; (c) many multimedia searches are for information about people, especially in audio search; and (d) multimedia search has begun to shift from entertainment to other categories such as medical, sports, and technology (based on the most repeated terms). Implications for design of Web multimedia search engines are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.9, S.1756-1768
    Type
    a