Search (87 results, page 1 of 5)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Sun, Y.: National and international dimensions of the Triple Helix in Japan : university-industry-government versus international coauthorship relations (2009) 0.02
    0.024440078 = product of:
      0.061100192 = sum of:
        0.0100103095 = weight(_text_:a in 2761) [ClassicSimilarity], result of:
          0.0100103095 = score(doc=2761,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18723148 = fieldWeight in 2761, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2761)
        0.051089883 = sum of:
          0.013396261 = weight(_text_:information in 2761) [ClassicSimilarity], result of:
            0.013396261 = score(doc=2761,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.16457605 = fieldWeight in 2761, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=2761)
          0.037693623 = weight(_text_:22 in 2761) [ClassicSimilarity], result of:
            0.037693623 = score(doc=2761,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 2761, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2761)
      0.4 = coord(2/5)
    
    Abstract
    International co-authorship relations and university-industry-government (Triple Helix) relations have hitherto been studied separately. Using Japanese publication data for the 1981-2004 period, we were able to study both kinds of relations in a single design. In the Japanese file, 1,277,030 articles with at least one Japanese address were attributed to the three sectors, and we know additionally whether these papers were coauthored internationally. Using the mutual information in three and four dimensions, respectively, we show that the Japanese Triple-Helix system has been continuously eroded at the national level. However, since the mid-1990s, international coauthorship relations have contributed to a reduction of the uncertainty at the national level. In other words, the national publication system of Japan has developed a capacity to retain surplus value generated internationally. In a final section, we compare these results with an analysis based on similar data for Canada. A relative uncoupling of national university-industry-government relations because of international collaborations is indicated in both countries.
    Date
    22. 3.2009 19:07:20
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.4, S.778-788
    Type
    a
  2. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.02
    0.023932742 = product of:
      0.059831854 = sum of:
        0.010769378 = weight(_text_:a in 4463) [ClassicSimilarity], result of:
          0.010769378 = score(doc=4463,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20142901 = fieldWeight in 4463, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4463)
        0.049062476 = sum of:
          0.017651124 = weight(_text_:information in 4463) [ClassicSimilarity], result of:
            0.017651124 = score(doc=4463,freq=10.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.21684799 = fieldWeight in 4463, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4463)
          0.031411353 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
            0.031411353 = score(doc=4463,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.19345059 = fieldWeight in 4463, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4463)
      0.4 = coord(2/5)
    
    Abstract
    This article considers the relationships among meaning generation, selection, and the dynamics of discourse from a variety of perspectives ranging from information theory and biology to sociology. Following Husserl's idea of a horizon of meanings in intersubjective communication, we propose a way in which, using Shannon's equations, the generation and selection of meanings from a horizon of possibilities can be considered probabilistically. The information-theoretical dynamics we articulate considers a process of meaning generation within cultural evolution: information is imbued with meaning, and through this process, the number of options for the selection of meaning in discourse proliferates. The redundancy of possible meanings contributes to a codification of expectations within the discourse. Unlike hardwired DNA, the codes of nonbiological systems can coevolve with the variations. Spanning horizons of meaning, the codes structure the communications as selection environments that shape discourses. Discursive knowledge can be considered as meta-coded communication that enables us to translate among differently coded communications. The dynamics of discursive knowledge production can thus infuse the historical dynamics with a cultural evolution by adding options, that is, by increasing redundancy. A calculus of redundancy is presented as an indicator whereby these dynamics of discourse and meaning may be explored empirically.
    Date
    29. 9.2018 11:22:09
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.10, S.1181-1192
    Theme
    Information
    Type
    a
  3. Leydesdorff, L.: ¬The construction and globalization of the knowledge base in inter-human communication systems (2003) 0.02
    0.022870608 = product of:
      0.05717652 = sum of:
        0.0100103095 = weight(_text_:a in 1621) [ClassicSimilarity], result of:
          0.0100103095 = score(doc=1621,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18723148 = fieldWeight in 1621, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1621)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 1621) [ClassicSimilarity], result of:
            0.009472587 = score(doc=1621,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 1621, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=1621)
          0.037693623 = weight(_text_:22 in 1621) [ClassicSimilarity], result of:
            0.037693623 = score(doc=1621,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 1621, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1621)
      0.4 = coord(2/5)
    
    Abstract
    The relationship between the "knowledge base" and the "globalization" of communication systems is discussed from the perspective of communication theory. I argue that inter-human communication takes place at two levels. At the first level information is exchanged and provided with meaning and at the second level meaning can reflexively be communicated. Human language can be considered as the evolutionary achievement which enables us to use these two channels of communication simultaneously. Providing meaning with hindsight is a recursive operation: a meaning that makes a difference can be considered as knowledge. If the production of knowledge is socially organized, the perspective of hindsight can further be codified. This adds globalization to the historically stabilized patterns of communications. Globalization can be expected to transform the communications in an evolutionary mode. However, the self-organization of a knowledge-based society remains an expectation with the status of a hypothesis.
    Date
    22. 5.2003 19:48:04
    Type
    a
  4. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.02
    0.022521732 = product of:
      0.056304332 = sum of:
        0.009138121 = weight(_text_:a in 4681) [ClassicSimilarity], result of:
          0.009138121 = score(doc=4681,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 4681, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 4681) [ClassicSimilarity], result of:
            0.009472587 = score(doc=4681,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 4681, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
          0.037693623 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
            0.037693623 = score(doc=4681,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 4681, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4681)
      0.4 = coord(2/5)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.2, S.198-201
    Type
    a
  5. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.02
    0.020076003 = product of:
      0.050190005 = sum of:
        0.0076151006 = weight(_text_:a in 4186) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=4186,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 4186, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4186)
        0.042574905 = sum of:
          0.011163551 = weight(_text_:information in 4186) [ClassicSimilarity], result of:
            0.011163551 = score(doc=4186,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.13714671 = fieldWeight in 4186, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
          0.031411353 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
            0.031411353 = score(doc=4186,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.19345059 = fieldWeight in 4186, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4186)
      0.4 = coord(2/5)
    
    Abstract
    The Impact Factors (IFs) of the Institute for Scientific Information suffer from a number of drawbacks, among them the statistics-Why should one use the mean and not the median?-and the incomparability among fields of science because of systematic differences in citation behavior among fields. Can these drawbacks be counteracted by fractionally counting citation weights instead of using whole numbers in the numerators? (a) Fractional citation counts are normalized in terms of the citing sources and thus would take into account differences in citation behavior among fields of science. (b) Differences in the resulting distributions can be tested statistically for their significance at different levels of aggregation. (c) Fractional counting can be generalized to any document set including journals or groups of journals, and thus the significance of differences among both small and large sets can be tested. A list of fractionally counted IFs for 2008 is available online at http:www.leydesdorff.net/weighted_if/weighted_if.xls The between-group variance among the 13 fields of science identified in the U.S. Science and Engineering Indicators is no longer statistically significant after this normalization. Although citation behavior differs largely between disciplines, the reflection of these differences in fractionally counted citation distributions can not be used as a reliable instrument for the classification.
    Date
    22. 1.2011 12:51:07
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.2, S.217-229
    Type
    a
  6. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.02
    0.01905884 = product of:
      0.0476471 = sum of:
        0.008341924 = weight(_text_:a in 3089) [ClassicSimilarity], result of:
          0.008341924 = score(doc=3089,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 3089, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3089)
        0.039305177 = sum of:
          0.007893822 = weight(_text_:information in 3089) [ClassicSimilarity], result of:
            0.007893822 = score(doc=3089,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.09697737 = fieldWeight in 3089, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3089)
          0.031411353 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
            0.031411353 = score(doc=3089,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.19345059 = fieldWeight in 3089, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3089)
      0.4 = coord(2/5)
    
    Abstract
    Climate change as a complex physical and social issue has gained increasing attention in the natural as well as the social sciences. Climate change research has become more interdisciplinary and even transdisciplinary as a typical Mode-2 science that is also dependent on an application context for its further development. We propose to approach interdisciplinarity as a co-construction of the knowledge base in the reference patterns and the programmatic focus in the editorials in the core journal of the climate-change sciences-Climatic Change-during the period 1977-2013. First, we analyze the knowledge base of the journal and map journal-journal relations on the basis of the references in the articles. Second, we follow the development of the programmatic focus by analyzing the semantics in the editorials. We argue that interdisciplinarity is a result of the co-construction between different agendas: The selection of publications into the knowledge base of the journal, and the adjustment of the programmatic focus to the political context in the editorials. Our results show a widening of the knowledge base from referencing the multidisciplinary journals Nature and Science to citing journals from specialist fields. The programmatic focus follows policy-oriented issues and incorporates public metaphors.
    Date
    24. 8.2016 17:53:22
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.9, S.2181-2193
    Type
    a
  7. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.01
    0.009850507 = product of:
      0.024626266 = sum of:
        0.005779455 = weight(_text_:a in 4460) [ClassicSimilarity], result of:
          0.005779455 = score(doc=4460,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10809815 = fieldWeight in 4460, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4460)
        0.018846812 = product of:
          0.037693623 = sum of:
            0.037693623 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
              0.037693623 = score(doc=4460,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23214069 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4460)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Aggregated journal-journal citations can be used for mapping the intellectual organization of the sciences in terms of specialties because the latter can be considered as interreading communities. Can the journal-journal citations also be used as early indicators of change by comparing the files for two subsequent years? Probabilistic entropy measures enable us to analyze changes in large datasets at different levels of aggregation and in considerable detail. Compares Journal Citation Reports of the Social Science Citation Index for 1999 with similar data for 1998 and analyzes the differences using these measures. Compares the various indicators with similar developments in the Science Citation Index. Specialty formation seems a more important mechanism in the development of the social sciences than in the natural and life sciences, but the developments in the social sciences are volatile. The use of aggregate statistics based on the Science Citation Index is ill-advised in the case of the social sciences because of structural differences in the underlying dynamics.
    Date
    6.11.2005 19:02:22
    Type
    a
  8. Leydesdorff, L.: Similarity measures, author cocitation Analysis, and information theory (2005) 0.01
    0.009092018 = product of:
      0.022730045 = sum of:
        0.011678694 = weight(_text_:a in 3471) [ClassicSimilarity], result of:
          0.011678694 = score(doc=3471,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.21843673 = fieldWeight in 3471, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3471)
        0.011051352 = product of:
          0.022102704 = sum of:
            0.022102704 = weight(_text_:information in 3471) [ClassicSimilarity], result of:
              0.022102704 = score(doc=3471,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27153665 = fieldWeight in 3471, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3471)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The use of Pearson's correlation coefficient in Author Cocitation Analysis was compared with Salton's cosine measure in a number of recent contributions. Unlike the Pearson correlation, the cosine is insensitive to the number of zeros. However, one has the option of applying a logarithmic transformation in correlation analysis. Information caiculus is based an both the logarithmic transformation and provides a non-parametric statistics. Using this methodology, one can cluster a document set in a precise way and express the differences in terms of bits of information. The algorithm is explained and used an the data set, which was made the subject of this discussion.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.7, S.769-772
    Type
    a
  9. Leydesdorff, L.: Should co-occurrence data be normalized : a rejoinder (2007) 0.01
    0.008412599 = product of:
      0.021031497 = sum of:
        0.01155891 = weight(_text_:a in 627) [ClassicSimilarity], result of:
          0.01155891 = score(doc=627,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 627, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=627)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 627) [ClassicSimilarity], result of:
              0.018945174 = score(doc=627,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 627, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=627)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.14, S.2411-2413
    Type
    a
  10. Bornmann, L.; Leydesdorff, L.: Statistical tests and research assessments : a comment on Schneider (2012) (2013) 0.01
    0.008412599 = product of:
      0.021031497 = sum of:
        0.01155891 = weight(_text_:a in 752) [ClassicSimilarity], result of:
          0.01155891 = score(doc=752,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 752, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=752)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 752) [ClassicSimilarity], result of:
              0.018945174 = score(doc=752,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=752)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.6, S.1306-1308
    Type
    a
  11. Leydesdorff, L.; Ivanova, I.A.: Mutual redundancies in interhuman communication systems : steps toward a calculus of processing meaning (2014) 0.01
    0.008069544 = product of:
      0.020173859 = sum of:
        0.009010308 = weight(_text_:a in 1211) [ClassicSimilarity], result of:
          0.009010308 = score(doc=1211,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1685276 = fieldWeight in 1211, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1211)
        0.011163551 = product of:
          0.022327103 = sum of:
            0.022327103 = weight(_text_:information in 1211) [ClassicSimilarity], result of:
              0.022327103 = score(doc=1211,freq=16.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27429342 = fieldWeight in 1211, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1211)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The study of interhuman communication requires a more complex framework than Claude E. Shannon's (1948) mathematical theory of communication because "information" is defined in the latter case as meaningless uncertainty. Assuming that meaning cannot be communicated, we extend Shannon's theory by defining mutual redundancy as a positional counterpart of the relational communication of information. Mutual redundancy indicates the surplus of meanings that can be provided to the exchanges in reflexive communications. The information is redundant because it is based on "pure sets" (i.e., without subtraction of mutual information in the overlaps). We show that in the three-dimensional case (e.g., of a triple helix of university-industry-government relations), mutual redundancy is equal to mutual information (Rxyz = Txyz); but when the dimensionality is even, the sign is different. We generalize to the measurement in N dimensions and proceed to the interpretation. Using Niklas Luhmann's (1984-1995) social systems theory and/or Anthony Giddens's (1979, 1984) structuration theory, mutual redundancy can be provided with an interpretation in the sociological case: Different meaning-processing structures code and decode with other algorithms. A surplus of ("absent") options can then be generated that add to the redundancy. Luhmann's "functional (sub)systems" of expectations or Giddens's "rule-resource sets" are positioned mutually, but coupled operationally in events or "instantiated" in actions. Shannon-type information is generated by the mediation, but the "structures" are (re-)positioned toward one another as sets of (potentially counterfactual) expectations. The structural differences among the coding and decoding algorithms provide a source of additional options in reflexive and anticipatory communications.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.386-399
    Theme
    Information
    Type
    a
  12. Leydesdorff, L.: Accounting for the uncertainty in the evaluation of percentile ranks (2012) 0.01
    0.007058388 = product of:
      0.01764597 = sum of:
        0.008173384 = weight(_text_:a in 447) [ClassicSimilarity], result of:
          0.008173384 = score(doc=447,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 447, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=447)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 447) [ClassicSimilarity], result of:
              0.018945174 = score(doc=447,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 447, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=447)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.11, S.2349-2350
    Type
    a
  13. Leydesdorff, L.; Wagner, C,; Bornmann, L.: Replicability and the public/private divide (2016) 0.01
    0.007058388 = product of:
      0.01764597 = sum of:
        0.008173384 = weight(_text_:a in 3023) [ClassicSimilarity], result of:
          0.008173384 = score(doc=3023,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 3023, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=3023)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 3023) [ClassicSimilarity], result of:
              0.018945174 = score(doc=3023,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 3023, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3023)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.7, S.1777-1778
    Type
    a
  14. Leydesdorff, L.: Dynamic and evolutionary updates of classificatory schemes in scientific journal structures (2002) 0.01
    0.0069400403 = product of:
      0.0173501 = sum of:
        0.009535614 = weight(_text_:a in 1249) [ClassicSimilarity], result of:
          0.009535614 = score(doc=1249,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 1249, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1249)
        0.007814486 = product of:
          0.015628971 = sum of:
            0.015628971 = weight(_text_:information in 1249) [ClassicSimilarity], result of:
              0.015628971 = score(doc=1249,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1920054 = fieldWeight in 1249, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1249)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Can the inclusion of new journals in the Science Citation Index be used for the indication of structural change in the database, and how can this change be compared with reorganizations of reiations among previously included journals? Change in the number of journals (n) is distinguished from change in the number of journal categories (m). Although the number of journals can be considered as a given at each moment in time, the number of journal categories is based an a reconstruction that is time-stamped ex post. The reflexive reconstruction is in need of an update when new information becomes available in a next year. Implications of this shift towards an evolutionary perspective are specified.
    Source
    Journal of the American Society for Information Science and technology. 53(2002) no.12, S.987-994
    Type
    a
  15. Leydesdorff, L.; Rotolo, D.; Rafols, I.: Bibliometric perspectives on medical innovation using the medical subject headings of PubMed (2012) 0.01
    0.0066833766 = product of:
      0.016708441 = sum of:
        0.0100103095 = weight(_text_:a in 494) [ClassicSimilarity], result of:
          0.0100103095 = score(doc=494,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18723148 = fieldWeight in 494, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=494)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 494) [ClassicSimilarity], result of:
              0.013396261 = score(doc=494,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 494, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=494)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Multiple perspectives on the nonlinear processes of medical innovations can be distinguished and combined using the Medical Subject Headings (MeSH) of the MEDLINE database. Focusing on three main branches-"diseases," "drugs and chemicals," and "techniques and equipment"-we use base maps and overlay techniques to investigate the translations and interactions and thus to gain a bibliometric perspective on the dynamics of medical innovations. To this end, we first analyze the MEDLINE database, the MeSH index tree, and the various options for a static mapping from different perspectives and at different levels of aggregation. Following a specific innovation (RNA interference) over time, the notion of a trajectory which leaves a signature in the database is elaborated. Can the detailed index terms describing the dynamics of research be used to predict the diffusion dynamics of research results? Possibilities are specified for further integration between the MEDLINE database on one hand, and the Science Citation Index and Scopus (containing citation information) on the other.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.11, S.2239-2253
    Type
    a
  16. Leydesdorff, L.: ¬The communication of meaning and the structuration of expectations : Giddens' "structuration theory" and Luhmann's "self-organization" (2010) 0.01
    0.0066203782 = product of:
      0.016550945 = sum of:
        0.007078358 = weight(_text_:a in 4004) [ClassicSimilarity], result of:
          0.007078358 = score(doc=4004,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 4004, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4004)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 4004) [ClassicSimilarity], result of:
              0.018945174 = score(doc=4004,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 4004, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4004)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The communication of meaning as distinct from (Shannon-type) information is central to Luhmann's social systems theory and Giddens' structuration theory of action. These theories share an emphasis on reflexivity, but focus on meaning along a divide between interhuman communication and intentful action as two different systems of reference. Recombining these two theories into a theory about the structuration of expectations, interactions, organization, and self-organization of intentional communications can be simulated based on algorithms from the computation of anticipatory systems. The self-organizing and organizing layers remain rooted in the double contingency of the human encounter, which provides the variation. Organization and self-organization of communication are reflexive upon and therefore reconstructive of each other. Using mutual information in three dimensions, the imprint of meaning processing in the modeling system on the historical organization of uncertainty in the modeled system can be measured. This is shown empirically in the case of intellectual organization as "structurating" structure in the textual domain of scientific articles.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.10, S.2138-2150
    Theme
    Information
    Type
    a
  17. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.01
    0.0065180818 = product of:
      0.016295204 = sum of:
        0.01155891 = weight(_text_:a in 3436) [ClassicSimilarity], result of:
          0.01155891 = score(doc=3436,freq=16.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 3436, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3436)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 3436) [ClassicSimilarity], result of:
              0.009472587 = score(doc=3436,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 3436, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3436)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.4, S.787-801
    Type
    a
  18. Leydesdorff, L.; Strand, Oe.: ¬The Swedish system of innovation : regional synergies in a knowledge-based economy (2013) 0.01
    0.006334501 = product of:
      0.015836252 = sum of:
        0.009138121 = weight(_text_:a in 1047) [ClassicSimilarity], result of:
          0.009138121 = score(doc=1047,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 1047, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1047)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 1047) [ClassicSimilarity], result of:
              0.013396261 = score(doc=1047,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 1047, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1047)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Based on the complete set of firm data for Sweden (N = 1,187,421; November 2011), we analyze the mutual information among the geographical, technological, and organizational distributions in terms of synergies at regional and national levels. Using this measure, the interaction among three dimensions can become negative and thus indicate a net export of uncertainty by a system or, in other words, synergy in how knowledge functions are distributed over the carriers. Aggregation at the regional level (NUTS3) of the data organized at the municipal level (NUTS5) shows that 48.5% of the regional synergy is provided by the 3 metropolitan regions of Stockholm, Gothenburg, and Malmö/Lund. Sweden can be considered a centralized and hierarchically organized system. Our results accord with other statistics, but this triple helix indicator measures synergy more specifically and quantitatively. The analysis also provides us with validation for using this measure in previous studies of more regionalized systems of innovation (such as Hungary and Norway).
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.9, S.1890-1902
    Type
    a
  19. Ye, F.Y.; Yu, S.S.; Leydesdorff, L.: ¬The Triple Helix of university-industry-government relations at the country level and its dynamic evolution under the pressures of globalization (2013) 0.01
    0.006334501 = product of:
      0.015836252 = sum of:
        0.009138121 = weight(_text_:a in 1110) [ClassicSimilarity], result of:
          0.009138121 = score(doc=1110,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 1110, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1110)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 1110) [ClassicSimilarity], result of:
              0.013396261 = score(doc=1110,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 1110, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1110)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Using data from the Web of Science (WoS), we analyze the mutual information among university, industry, and government addresses (U-I-G) at the country level for a number of countries. The dynamic evolution of the Triple Helix can thus be compared among developed and developing nations in terms of cross-sectional coauthorship relations. The results show that the Triple Helix interactions among the three subsystems U-I-G become less intensive over time, but unequally for different countries. We suggest that globalization erodes local Triple Helix relations and thus can be expected to have increased differentiation in national systems since the mid-1990s. This effect of globalization is more pronounced in developed countries than in developing ones. In the dynamic analysis, we focus on a more detailed comparison between China and the United States. Specifically, the Chinese Academy of the (Social) Sciences is changing increasingly from a public research institute to an academic one, and this has a measurable effect on China's position in the globalization.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.11, S.2317-2325
    Type
    a
  20. Chen, C.; Leydesdorff, L.: Patterns of connections and movements in dual-map overlays : a new method of publication portfolio analysis (2014) 0.01
    0.0062976703 = product of:
      0.015744176 = sum of:
        0.011797264 = weight(_text_:a in 1200) [ClassicSimilarity], result of:
          0.011797264 = score(doc=1200,freq=24.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22065444 = fieldWeight in 1200, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1200)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 1200) [ClassicSimilarity], result of:
              0.007893822 = score(doc=1200,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 1200, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1200)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Portfolio analysis of the publication profile of a unit of interest, ranging from individuals and organizations to a scientific field or interdisciplinary programs, aims to inform analysts and decision makers about the position of the unit, where it has been, and where it may go in a complex adaptive environment. A portfolio analysis may aim to identify the gap between the current position of an organization and a goal that it intends to achieve or identify competencies of multiple institutions. We introduce a new visual analytic method for analyzing, comparing, and contrasting characteristics of publication portfolios. The new method introduces a novel design of dual-map thematic overlays on global maps of science. Each publication portfolio can be added as one layer of dual-map overlays over 2 related, but distinct, global maps of science: one for citing journals and the other for cited journals. We demonstrate how the new design facilitates a portfolio analysis in terms of patterns emerging from the distributions of citation threads and the dynamics of trajectories as a function of space and time. We first demonstrate the analysis of portfolios defined on a single source article. Then we contrast publication portfolios of multiple comparable units of interest; namely, colleges in universities and corporate research organizations. We also include examples of overlays of scientific fields. We expect that our method will provide new insights to portfolio analysis.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.2, S.334-351
    Type
    a