Search (43 results, page 1 of 3)

  • × author_ss:"Rousseau, R."
  • × theme_ss:"Informetrie"
  1. Egghe, L.; Rousseau, R.: Averaging and globalising quotients of informetric and scientometric data (1996) 0.02
    0.023770515 = product of:
      0.059426285 = sum of:
        0.012260076 = weight(_text_:a in 7659) [ClassicSimilarity], result of:
          0.012260076 = score(doc=7659,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22931081 = fieldWeight in 7659, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=7659)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 7659) [ClassicSimilarity], result of:
            0.009472587 = score(doc=7659,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 7659, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=7659)
          0.037693623 = weight(_text_:22 in 7659) [ClassicSimilarity], result of:
            0.037693623 = score(doc=7659,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 7659, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=7659)
      0.4 = coord(2/5)
    
    Abstract
    It is possible, using ISI's Journal Citation Report (JCR), to calculate average impact factors (AIF) for LCR's subject categories but it can be more useful to know the global Impact Factor (GIF) of a subject category and compare the 2 values. Reports results of a study to compare the relationships between AIFs and GIFs of subjects, based on the particular case of the average impact factor of a subfield versus the impact factor of this subfield as a whole, the difference being studied between an average of quotients, denoted as AQ, and a global average, obtained as a quotient of averages, and denoted as GQ. In the case of impact factors, AQ becomes the average impact factor of a field, and GQ becomes its global impact factor. Discusses a number of applications of this technique in the context of informetrics and scientometrics
    Source
    Journal of information science. 22(1996) no.3, S.165-170
    Type
    a
  2. Asonuma, A.; Fang, Y.; Rousseau, R.: Reflections on the age distribution of Japanese scientists (2006) 0.02
    0.022135837 = product of:
      0.055339593 = sum of:
        0.008173384 = weight(_text_:a in 5270) [ClassicSimilarity], result of:
          0.008173384 = score(doc=5270,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 5270, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5270)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 5270) [ClassicSimilarity], result of:
            0.009472587 = score(doc=5270,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 5270, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=5270)
          0.037693623 = weight(_text_:22 in 5270) [ClassicSimilarity], result of:
            0.037693623 = score(doc=5270,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 5270, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5270)
      0.4 = coord(2/5)
    
    Abstract
    The age distribution of a country's scientists is an important element in the study of its research capacity. In this article we investigate the age distribution of Japanese scientists in order to find out whether major events such as World War II had an appreciable effect on its features. Data have been obtained from population censuses taken in Japan from 1970 to 1995. A comparison with the situation in China and the United States has been made. We find that the group of scientific researchers outside academia is dominated by the young: those younger than age 35. The personnel group in higher education, on the other hand, is dominated by the baby boomers: those who were born after World War II. Contrary to the Chinese situation we could not find any influence of major nondemographic events. The only influence we found was the increase in enrollment of university students after World War II caused by the reform of the Japanese university system. Female participation in the scientific and university systems in Japan, though still low, is increasing.
    Date
    22. 7.2006 15:26:24
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.342-346
    Type
    a
  3. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.02
    0.016060803 = product of:
      0.040152006 = sum of:
        0.006092081 = weight(_text_:a in 5171) [ClassicSimilarity], result of:
          0.006092081 = score(doc=5171,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.11394546 = fieldWeight in 5171, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.034059923 = sum of:
          0.0089308405 = weight(_text_:information in 5171) [ClassicSimilarity], result of:
            0.0089308405 = score(doc=5171,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.10971737 = fieldWeight in 5171, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.03125 = fieldNorm(doc=5171)
          0.025129084 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
            0.025129084 = score(doc=5171,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.15476047 = fieldWeight in 5171, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=5171)
      0.4 = coord(2/5)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.6, S.549-568
    Type
    a
  4. Rousseau, R.; Ye, F.Y.: ¬A proposal for a dynamic h-type index (2008) 0.01
    0.0097140325 = product of:
      0.024285082 = sum of:
        0.013347079 = weight(_text_:a in 2351) [ClassicSimilarity], result of:
          0.013347079 = score(doc=2351,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.24964198 = fieldWeight in 2351, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2351)
        0.010938003 = product of:
          0.021876005 = sum of:
            0.021876005 = weight(_text_:information in 2351) [ClassicSimilarity], result of:
              0.021876005 = score(doc=2351,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2687516 = fieldWeight in 2351, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2351)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    A time-dependent h-type indicator is proposed. This indicator depends on the size of the h-core, the number of citations received, and recent change in the value of the h-index. As such, it tries to combine in a dynamic way older information about the source (e.g., a scientist or research institute that is evaluated) with recent information.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.11, S.1853-1855
    Type
    a
  5. Rousseau, R.: Egghe's g-index is not a proper concentration measure (2015) 0.01
    0.008412599 = product of:
      0.021031497 = sum of:
        0.01155891 = weight(_text_:a in 1864) [ClassicSimilarity], result of:
          0.01155891 = score(doc=1864,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 1864, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=1864)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 1864) [ClassicSimilarity], result of:
              0.018945174 = score(doc=1864,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274569 = fieldWeight in 1864, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1864)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.7, S.1518-1519
    Type
    a
  6. Rousseau, S.; Rousseau, R.: Metric-wiseness (2015) 0.01
    0.008234787 = product of:
      0.020586967 = sum of:
        0.009535614 = weight(_text_:a in 6069) [ClassicSimilarity], result of:
          0.009535614 = score(doc=6069,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 6069, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=6069)
        0.011051352 = product of:
          0.022102704 = sum of:
            0.022102704 = weight(_text_:information in 6069) [ClassicSimilarity], result of:
              0.022102704 = score(doc=6069,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27153665 = fieldWeight in 6069, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6069)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.11, S.2389
    Type
    a
  7. Rousseau, S.; Rousseau, R.: Interactions between journal attributes and authors' willingness to wait for editorial decisions (2012) 0.01
    0.007583283 = product of:
      0.018958207 = sum of:
        0.012260076 = weight(_text_:a in 250) [ClassicSimilarity], result of:
          0.012260076 = score(doc=250,freq=18.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22931081 = fieldWeight in 250, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=250)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 250) [ClassicSimilarity], result of:
              0.013396261 = score(doc=250,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 250, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=250)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this article, we report on a discrete choice experiment to determine the willingness-to-wait (WTW) in the context of journal submissions. Respondents to our survey are mostly active in the information sciences, including librarians. Besides WTW, other attributes included in the study are the quality of the editorial board, the quality of referee reports, the probability of being accepted, the ISI impact factor, and the standing of the journal among peers. Interaction effects originating from scientists' personal characteristics (age, region of origin, motivations to publish) with the WTW are highlighted. A difference was made between submitting a high quality article and a standard article. Among the interesting results obtained from our analysis we mention that for a high-quality article, researchers are willing to wait some 18 months longer for a journal with an ISI impact factor above 2 than for a journal without an impact factor, keeping all other factors constant. For a standard article, the WTW decreases to some 8 months. Gender had no effect on our conclusions.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.6, S.1213-1225
    Type
    a
  8. Egghe, L.; Liang, L.; Rousseau, R.: ¬A relation between h-index and impact factor in the power-law model (2009) 0.01
    0.007399688 = product of:
      0.01849922 = sum of:
        0.012184162 = weight(_text_:a in 6759) [ClassicSimilarity], result of:
          0.012184162 = score(doc=6759,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.22789092 = fieldWeight in 6759, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=6759)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 6759) [ClassicSimilarity], result of:
              0.012630116 = score(doc=6759,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 6759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6759)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Using a power-law model, the two best-known topics in citation analysis, namely the impact factor and the Hirsch index, are unified into one relation (not a function). The validity of our model is, at least in a qualitative way, confirmed by real data.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.11, S.2362-2365
    Type
    a
  9. Rousseau, R.: On Egghe's construction of Lorenz curves (2007) 0.01
    0.0070104985 = product of:
      0.017526247 = sum of:
        0.009632425 = weight(_text_:a in 521) [ClassicSimilarity], result of:
          0.009632425 = score(doc=521,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18016359 = fieldWeight in 521, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=521)
        0.007893822 = product of:
          0.015787644 = sum of:
            0.015787644 = weight(_text_:information in 521) [ClassicSimilarity], result of:
              0.015787644 = score(doc=521,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19395474 = fieldWeight in 521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.078125 = fieldNorm(doc=521)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Contrary to Burrell's statements, Egghe's theory of continuous concentration does include the construction of a standard Lorenz curve.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.10, S.1551-1552
    Type
    a
  10. Liu, Y.; Rousseau, R.: Towards a representation of diffusion and interaction of scientific ideas : the case of fiber optics communication (2012) 0.01
    0.0069400403 = product of:
      0.0173501 = sum of:
        0.009535614 = weight(_text_:a in 2723) [ClassicSimilarity], result of:
          0.009535614 = score(doc=2723,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 2723, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2723)
        0.007814486 = product of:
          0.015628971 = sum of:
            0.015628971 = weight(_text_:information in 2723) [ClassicSimilarity], result of:
              0.015628971 = score(doc=2723,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1920054 = fieldWeight in 2723, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2723)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The research question studied in this contribution is how to find an adequate representation to describe the diffusion of scientific ideas over time. We claim that citation data, at least of articles that act as concept symbols, can be considered to contain this information. As a case study we show how the founding article by Nobel Prize winner Kao illustrates the evolution of the field of fiber optics communication. We use a continuous description of discrete citation data in order to accentuate turning points and breakthroughs in the history of this field. Applying the principles explained in this contribution informetrics may reveal the trajectories along which science is developing.
    Source
    Information processing and management. 48(2012) no.4, S.791-801
    Type
    a
  11. Shi, D.; Rousseau, R.; Yang, L.; Li, J.: ¬A journal's impact factor is influenced by changes in publication delays of citing journals (2017) 0.01
    0.0069366493 = product of:
      0.017341623 = sum of:
        0.009138121 = weight(_text_:a in 3441) [ClassicSimilarity], result of:
          0.009138121 = score(doc=3441,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 3441, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3441)
        0.008203502 = product of:
          0.016407004 = sum of:
            0.016407004 = weight(_text_:information in 3441) [ClassicSimilarity], result of:
              0.016407004 = score(doc=3441,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.20156369 = fieldWeight in 3441, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3441)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this article we describe another problem with journal impact factors by showing that one journal's impact factor is dependent on other journals' publication delays. The proposed theoretical model predicts a monotonically decreasing function of the impact factor as a function of publication delay, on condition that the citation curve of the journal is monotone increasing during the publication window used in the calculation of the journal impact factor; otherwise, this function has a reversed U shape. Our findings based on simulations are verified by examining three journals in the information sciences: the Journal of Informetrics, Scientometrics, and the Journal of the Association for Information Science and Technology.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.3, S.780-789
    Type
    a
  12. Egghe, L.; Rousseau, R.: ¬The influence of publication delays on the observed aging distribution of scientific literature (2000) 0.01
    0.0068851607 = product of:
      0.017212901 = sum of:
        0.010897844 = weight(_text_:a in 4385) [ClassicSimilarity], result of:
          0.010897844 = score(doc=4385,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20383182 = fieldWeight in 4385, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4385)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 4385) [ClassicSimilarity], result of:
              0.012630116 = score(doc=4385,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 4385, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4385)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Observed aging curves are influenced by publication delays. In this article, we show how the 'undisturbed' aging function and the publication delay combine to give the observed aging function. This combination is performed by a mathematical operation known as convolution. Examples are given, such as the convolution of 2 Poisson distributions, 2 exponential distributions, a 2 lognormal distributions. A paradox is observed between theory and real data
    Source
    Journal of the American Society for Information Science. 51(2000) no.2, S.158-165
    Type
    a
  13. Jin, B.; Li, L.; Rousseau, R.: Long-term influences of interventions in the normal development of science : China and the cultural revolution (2004) 0.01
    0.0066833766 = product of:
      0.016708441 = sum of:
        0.0100103095 = weight(_text_:a in 2232) [ClassicSimilarity], result of:
          0.0100103095 = score(doc=2232,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18723148 = fieldWeight in 2232, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2232)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 2232) [ClassicSimilarity], result of:
              0.013396261 = score(doc=2232,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 2232, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2232)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Intellectual and technological talents and skills are the driving force for scientific and industrial development, especially in our times characterized by a knowledgebased economy. Major events in society and related political decisions, however, can have a long-term effect an a country's scientific weIl-being. Although the Cultural Revolution took place from 1966 to 1976, its aftermath can still be felt. This is shown by this study of the production and productivity of Chinese scientists as a function of their age. Based an the 1995-2000 data from the Chinese Science Citation database (CSCD), this article investigates the year-by-year age distribution of scientific and technological personnel publishing in China. It is shown that the "Talent Fault" originating during the Cultural Revolution still exists, and that a new gap resulting from recent brain drain might be developing. The purpose of this work is to provide necessary information about the current situation and especially the existing problems of the S&T workforce in China.
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.6, S.544-550
    Type
    a
  14. Egghe, L.; Liang, L.; Rousseau, R.: Fundamental properties of rhythm sequences (2008) 0.01
    0.006474727 = product of:
      0.016186817 = sum of:
        0.010661141 = weight(_text_:a in 1965) [ClassicSimilarity], result of:
          0.010661141 = score(doc=1965,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19940455 = fieldWeight in 1965, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1965)
        0.005525676 = product of:
          0.011051352 = sum of:
            0.011051352 = weight(_text_:information in 1965) [ClassicSimilarity], result of:
              0.011051352 = score(doc=1965,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13576832 = fieldWeight in 1965, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1965)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Fundamental mathematical properties of rhythm sequences are studied. In particular, a set of three axioms for valid rhythm indicators is proposed, and it is shown that the R-indicator satisfies only two out of three but that the R-indicator satisfies all three. This fills a critical, logical gap in the study of these indicator sequences. Matrices leading to a constant R-sequence are called baseline matrices. They are characterized as matrices with constant w-year diachronous impact factors. The relation with classical impact factors is clarified. Using regression analysis matrices with a rhythm sequence that is on average equal to 1 (smaller than 1, larger than 1) are characterized.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.9, S.1469-1478
    Type
    a
  15. Frandsen, T.F.; Rousseau, R.: Article impact calculated over arbitrary periods (2005) 0.01
    0.006219466 = product of:
      0.015548665 = sum of:
        0.010812371 = weight(_text_:a in 3264) [ClassicSimilarity], result of:
          0.010812371 = score(doc=3264,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20223314 = fieldWeight in 3264, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3264)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 3264) [ClassicSimilarity], result of:
              0.009472587 = score(doc=3264,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 3264, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3264)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In this paper we address the various formulations of impact of articles, usually groups of articles as gauged by citations that these articles receive over a certain period of time. The journal impact factor, as published by ISI (Philadelphia, PA), is the best-known example of a formulation of impact of journals (considered as a set of articles) but many others have been defined in the literature. Impact factors have varying publication and citation periods and the chosen length of these periods enables, e.g., a distinction between synchronous and diachronous impact factors. It is shown how an impact factor for the general case can be defined. Two alternatives for a general impact factor are proposed, depending an whether different publication years are seen as a whole, and hence treating each one of them differently, or by operating with citation periods of identical length but allowing each publication period different starting points.
    Source
    Journal of the American Society for Information Science and Technology. 56(2005) no.1, S.58-62
    Type
    a
  16. Kretschmer, H.; Rousseau, R.: Author inflation leads to a breakdown of Lotka's law : in and out of context (2001) 0.01
    0.006219466 = product of:
      0.015548665 = sum of:
        0.010812371 = weight(_text_:a in 5205) [ClassicSimilarity], result of:
          0.010812371 = score(doc=5205,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20223314 = fieldWeight in 5205, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5205)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 5205) [ClassicSimilarity], result of:
              0.009472587 = score(doc=5205,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 5205, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5205)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Fractional counting of authors of multi-authored papers has been shown to lead to a breakdown of Lotka's Law despite its robust character under most circumstances. Kretschmer and Rousseau use the normal count method of full credit for each author on two five-year bibliographies from each of 13 Dutch physics institutes where high co-authorship is a common occurrence. Kolmogorov-Smirnov tests were preformed to see if the Lotka distribution fit the data. All bibliographies up to 40 authors fit acceptably; no bibliography with a paper with over 100 authors fits the distribution. The underlying traditional "success breeds success" mechanism assumes new items on a one by one basis, but Egghe's generalized model would still account for the process. It seems unlikely that Lotka's Law will hold in a high co-authorship environment.
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.8, S.610-614
    Type
    a
  17. Egghe, L.; Rousseau, R.; Rousseau, S.: TOP-curves (2007) 0.01
    0.0060245167 = product of:
      0.015061291 = sum of:
        0.009535614 = weight(_text_:a in 50) [ClassicSimilarity], result of:
          0.009535614 = score(doc=50,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 50, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=50)
        0.005525676 = product of:
          0.011051352 = sum of:
            0.011051352 = weight(_text_:information in 50) [ClassicSimilarity], result of:
              0.011051352 = score(doc=50,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13576832 = fieldWeight in 50, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=50)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Several characteristics of classical Lorenz curves make them unsuitable for the study of a group of topperformers. TOP-curves, defined as a kind of mirror image of TIP-curves used in poverty studies, are shown to possess the properties necessary for adequate empirical ranking of various data arrays, based on the properties of the highest performers (i.e., the core). TOP-curves and essential TOP-curves, also introduced in this article, simultaneously represent the incidence, intensity, and inequality among the top. It is shown that TOPdominance partial order, introduced in this article, is stronger than Lorenz dominance order. In this way, this article contributes to the study of cores, a central issue in applied informetrics.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.6, S.777-785
    Type
    a
  18. Egghe, L.; Guns, R.; Rousseau, R.: Thoughts on uncitedness : Nobel laureates and Fields medalists as case studies (2011) 0.01
    0.005948606 = product of:
      0.014871514 = sum of:
        0.008173384 = weight(_text_:a in 4994) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4994,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4994, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4994)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 4994) [ClassicSimilarity], result of:
              0.013396261 = score(doc=4994,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 4994, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4994)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Contrary to what one might expect, Nobel laureates and Fields medalists have a rather large fraction (10% or more) of uncited publications. This is the case for (in total) 75 examined researchers from the fields of mathematics (Fields medalists), physics, chemistry, and physiology or medicine (Nobel laureates). We study several indicators for these researchers, including the h-index, total number of publications, average number of citations per publication, the number (and fraction) of uncited publications, and their interrelations. The most remarkable result is a positive correlation between the h-index and the number of uncited articles. We also present a Lotkaian model, which partially explains the empirically found regularities.
    Footnote
    Vgl.: Erratum. In: Journal of the American Society for Information Science and Technology. 63(2012) no.2, S.429.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.8, S.1637-1644
    Type
    a
  19. Rousseau, R.; Jin, B.: ¬The age-dependent h-type AR**2-index : basic properties and a case study (2008) 0.01
    0.005898641 = product of:
      0.014746603 = sum of:
        0.0100103095 = weight(_text_:a in 2638) [ClassicSimilarity], result of:
          0.0100103095 = score(doc=2638,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18723148 = fieldWeight in 2638, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2638)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 2638) [ClassicSimilarity], result of:
              0.009472587 = score(doc=2638,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 2638, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2638)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Hirsch-type indices are studied with special attention to the AR**2-index introduced by Jin. The article consists of two parts: a theoretical part and a practical illustration. In the theoretical part, we recall the definition of the AR**2-index and show that an alternative definition, the so-called AR**2,1, does not have the properties expected for this type of index. A practical example shows the existence of some of these mathematical properties and illustrates the difference between different h-type indices. Clearly the h-index itself is the most robust of all. It is shown that excluding so-called non-WoS source articles may have a significant influence on the R-and, especially, the g-index.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.14, S.2305-2311
    Type
    a
  20. Frandsen, T.F.; Rousseau, R.; Rowlands, I.: Diffusion factors (2006) 0.01
    0.0058368337 = product of:
      0.014592084 = sum of:
        0.009010308 = weight(_text_:a in 5587) [ClassicSimilarity], result of:
          0.009010308 = score(doc=5587,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1685276 = fieldWeight in 5587, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5587)
        0.0055817757 = product of:
          0.011163551 = sum of:
            0.011163551 = weight(_text_:information in 5587) [ClassicSimilarity], result of:
              0.011163551 = score(doc=5587,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13714671 = fieldWeight in 5587, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5587)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - The purpose of this paper is to clarify earlier work on journal diffusion metrics. Classical journal indicators such as the Garfield impact factor do not measure the breadth of influence across the literature of a particular journal title. As a new approach to measuring research influence, the study complements these existing metrics with a series of formally described diffusion factors. Design/methodology/approach - Using a publication-citation matrix as an organising construct, the paper develops formal descriptions of two forms of diffusion metric: "relative diffusion factors" and "journal diffusion factors" in both their synchronous and diachronous forms. It also provides worked examples for selected library and information science and economics journals, plus a sample of health information papers to illustrate their construction and use. Findings - Diffusion factors capture different aspects of the citation reception process than existing bibliometric measures. The paper shows that diffusion factors can be applied at the whole journal level or for sets of articles and that they provide a richer evidence base for citation analyses than traditional measures alone. Research limitations/implications - The focus of this paper is on clarifying the concepts underlying diffusion factors and there is unlimited scope for further work to apply these metrics to much larger and more comprehensive data sets than has been attempted here. Practical implications - These new tools extend the range of tools available for bibliometric, and possibly webometric, analysis. Diffusion factors might find particular application in studies where the research questions focus on the dynamic aspects of innovation and knowledge transfer. Originality/value - This paper will be of interest to those with theoretical interests in informetric distributions as well as those interested in science policy and innovation studies.
    Type
    a