Search (735 results, page 1 of 37)

  • × theme_ss:"Computerlinguistik"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.26
    0.2572809 = product of:
      0.3216011 = sum of:
        0.07364523 = product of:
          0.22093567 = sum of:
            0.22093567 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.22093567 = score(doc=562,freq=2.0), product of:
                0.39311135 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046368346 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.008173384 = weight(_text_:a in 562) [ClassicSimilarity], result of:
          0.008173384 = score(doc=562,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 562, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.22093567 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
          0.22093567 = score(doc=562,freq=2.0), product of:
            0.39311135 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046368346 = queryNorm
            0.56201804 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.018846812 = product of:
          0.037693623 = sum of:
            0.037693623 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
              0.037693623 = score(doc=562,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23214069 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.5 = coord(1/2)
      0.8 = coord(4/5)
    
    Abstract
    Document representations for text classification are typically based on the classical Bag-Of-Words paradigm. This approach comes with deficiencies that motivate the integration of features on a higher semantic level than single words. In this paper we propose an enhancement of the classical document representation through concepts extracted from background knowledge. Boosting is used for actual classification. Experimental evaluations on two well known text corpora support our approach through consistent improvement of the results.
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
    Type
    a
  2. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.18
    0.18223141 = product of:
      0.303719 = sum of:
        0.07364523 = product of:
          0.22093567 = sum of:
            0.22093567 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.22093567 = score(doc=862,freq=2.0), product of:
                0.39311135 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046368346 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
        0.009138121 = weight(_text_:a in 862) [ClassicSimilarity], result of:
          0.009138121 = score(doc=862,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 862, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
        0.22093567 = weight(_text_:2f in 862) [ClassicSimilarity], result of:
          0.22093567 = score(doc=862,freq=2.0), product of:
            0.39311135 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046368346 = queryNorm
            0.56201804 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
      0.6 = coord(3/5)
    
    Abstract
    This research revisits the classic Turing test and compares recent large language models such as ChatGPT for their abilities to reproduce human-level comprehension and compelling text generation. Two task challenges- summary and question answering- prompt ChatGPT to produce original content (98-99%) from a single text entry and sequential questions initially posed by Turing in 1950. We score the original and generated content against the OpenAI GPT-2 Output Detector from 2019, and establish multiple cases where the generated content proves original and undetectable (98%). The question of a machine fooling a human judge recedes in this work relative to the question of "how would one prove it?" The original contribution of the work presents a metric and simple grammatical set for understanding the writing mechanics of chatbots in evaluating their readability and statistical clarity, engagement, delivery, overall quality, and plagiarism risks. While Turing's original prose scores at least 14% below the machine-generated output, whether an algorithm displays hints of Turing's true initial thoughts (the "Lovelace 2.0" test) remains unanswerable.
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
    Type
    a
  3. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.17
    0.16510816 = product of:
      0.27518025 = sum of:
        0.007078358 = weight(_text_:a in 563) [ClassicSimilarity], result of:
          0.007078358 = score(doc=563,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 563, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.22093567 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.22093567 = score(doc=563,freq=2.0), product of:
            0.39311135 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046368346 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 563) [ClassicSimilarity], result of:
            0.009472587 = score(doc=563,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 563, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=563)
          0.037693623 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
            0.037693623 = score(doc=563,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 563, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=563)
      0.6 = coord(3/5)
    
    Abstract
    In this thesis we propose three new word association measures for multi-word term extraction. We combine these association measures with LocalMaxs algorithm in our extraction model and compare the results of different multi-word term extraction methods. Our approach is language and domain independent and requires no training data. It can be applied to such tasks as text summarization, information retrieval, and document classification. We further explore the potential of using multi-word terms as an effective representation for general web-page summarization. We extract multi-word terms from human written summaries in a large collection of web-pages, and generate the summaries by aligning document words with these multi-word terms. Our system applies machine translation technology to learn the aligning process from a training set and focuses on selecting high quality multi-word terms from human written summaries to generate suitable results for web-page summarization.
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  4. Engerer, V.: Informationswissenschaft und Linguistik. : kurze Geschichte eines fruchtbaren interdisziplinäaren Verhäaltnisses in drei Akten (2012) 0.09
    0.09270645 = product of:
      0.23176612 = sum of:
        0.0068111527 = weight(_text_:a in 3376) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=3376,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 3376, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=3376)
        0.22495496 = weight(_text_:91 in 3376) [ClassicSimilarity], result of:
          0.22495496 = score(doc=3376,freq=4.0), product of:
            0.25837386 = queryWeight, product of:
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.046368346 = queryNorm
            0.87065685 = fieldWeight in 3376, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.078125 = fieldNorm(doc=3376)
      0.4 = coord(2/5)
    
    Source
    SDV - Sprache und Datenverarbeitung. International journal for language data processing. 36(2012) H.2, S.71-91 [= E-Books - Fakten, Perspektiven und Szenarien] 36/2 (2012), S. 71-91
    Type
    a
  5. Alonge, A.; Calzolari, N.; Vossen, P.; Bloksma, L.; Castellon, I.; Marti, M.A.; Peters, W.: ¬The linguistic design of the EuroWordNet database (1998) 0.08
    0.08097581 = product of:
      0.20243952 = sum of:
        0.01155891 = weight(_text_:a in 6440) [ClassicSimilarity], result of:
          0.01155891 = score(doc=6440,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.2161963 = fieldWeight in 6440, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=6440)
        0.19088061 = weight(_text_:91 in 6440) [ClassicSimilarity], result of:
          0.19088061 = score(doc=6440,freq=2.0), product of:
            0.25837386 = queryWeight, product of:
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.046368346 = queryNorm
            0.7387768 = fieldWeight in 6440, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.09375 = fieldNorm(doc=6440)
      0.4 = coord(2/5)
    
    Source
    Computers and the humanities. 32(1998) no.1, S.91-115
    Type
    a
  6. Brychcín, T.; Konopík, M.: HPS: High precision stemmer (2015) 0.06
    0.056827057 = product of:
      0.09471176 = sum of:
        0.008341924 = weight(_text_:a in 2686) [ClassicSimilarity], result of:
          0.008341924 = score(doc=2686,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 2686, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2686)
        0.079533584 = weight(_text_:91 in 2686) [ClassicSimilarity], result of:
          0.079533584 = score(doc=2686,freq=2.0), product of:
            0.25837386 = queryWeight, product of:
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.046368346 = queryNorm
            0.30782366 = fieldWeight in 2686, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2686)
        0.006836252 = product of:
          0.013672504 = sum of:
            0.013672504 = weight(_text_:information in 2686) [ClassicSimilarity], result of:
              0.013672504 = score(doc=2686,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16796975 = fieldWeight in 2686, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2686)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Abstract
    Research into unsupervised ways of stemming has resulted, in the past few years, in the development of methods that are reliable and perform well. Our approach further shifts the boundaries of the state of the art by providing more accurate stemming results. The idea of the approach consists in building a stemmer in two stages. In the first stage, a stemming algorithm based upon clustering, which exploits the lexical and semantic information of words, is used to prepare large-scale training data for the second-stage algorithm. The second-stage algorithm uses a maximum entropy classifier. The stemming-specific features help the classifier decide when and how to stem a particular word. In our research, we have pursued the goal of creating a multi-purpose stemming tool. Its design opens up possibilities of solving non-traditional tasks such as approximating lemmas or improving language modeling. However, we still aim at very good results in the traditional task of information retrieval. The conducted tests reveal exceptional performance in all the above mentioned tasks. Our stemming method is compared with three state-of-the-art statistical algorithms and one rule-based algorithm. We used corpora in the Czech, Slovak, Polish, Hungarian, Spanish and English languages. In the tests, our algorithm excels in stemming previously unseen words (the words that are not present in the training set). Moreover, it was discovered that our approach demands very little text data for training when compared with competing unsupervised algorithms.
    Source
    Information processing and management. 51(2015) no.1, S.68-91
    Type
    a
  7. Warner, A.J.: Natural language processing (1987) 0.05
    0.054669764 = product of:
      0.1366744 = sum of:
        0.010897844 = weight(_text_:a in 337) [ClassicSimilarity], result of:
          0.010897844 = score(doc=337,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20383182 = fieldWeight in 337, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.125 = fieldNorm(doc=337)
        0.12577656 = sum of:
          0.025260232 = weight(_text_:information in 337) [ClassicSimilarity], result of:
            0.025260232 = score(doc=337,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.3103276 = fieldWeight in 337, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.125 = fieldNorm(doc=337)
          0.100516334 = weight(_text_:22 in 337) [ClassicSimilarity], result of:
            0.100516334 = score(doc=337,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.61904186 = fieldWeight in 337, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.125 = fieldNorm(doc=337)
      0.4 = coord(2/5)
    
    Source
    Annual review of information science and technology. 22(1987), S.79-108
    Type
    a
  8. Byrne, C.C.; McCracken, S.A.: ¬An adaptive thesaurus employing semantic distance, relational inheritance and nominal compound interpretation for linguistic support of information retrieval (1999) 0.04
    0.04414126 = product of:
      0.11035315 = sum of:
        0.008173384 = weight(_text_:a in 4483) [ClassicSimilarity], result of:
          0.008173384 = score(doc=4483,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 4483, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=4483)
        0.102179766 = sum of:
          0.026792523 = weight(_text_:information in 4483) [ClassicSimilarity], result of:
            0.026792523 = score(doc=4483,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.3291521 = fieldWeight in 4483, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.09375 = fieldNorm(doc=4483)
          0.07538725 = weight(_text_:22 in 4483) [ClassicSimilarity], result of:
            0.07538725 = score(doc=4483,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.46428138 = fieldWeight in 4483, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=4483)
      0.4 = coord(2/5)
    
    Date
    15. 3.2000 10:22:37
    Source
    Journal of information science. 25(1999) no.2, S.113-131
    Type
    a
  9. Paolillo, J.C.: Linguistics and the information sciences (2009) 0.03
    0.033100255 = product of:
      0.08275063 = sum of:
        0.009535614 = weight(_text_:a in 3840) [ClassicSimilarity], result of:
          0.009535614 = score(doc=3840,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 3840, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3840)
        0.07321502 = sum of:
          0.02923913 = weight(_text_:information in 3840) [ClassicSimilarity], result of:
            0.02923913 = score(doc=3840,freq=14.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.3592092 = fieldWeight in 3840, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3840)
          0.043975897 = weight(_text_:22 in 3840) [ClassicSimilarity], result of:
            0.043975897 = score(doc=3840,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.2708308 = fieldWeight in 3840, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3840)
      0.4 = coord(2/5)
    
    Abstract
    Linguistics is the scientific study of language which emphasizes language spoken in everyday settings by human beings. It has a long history of interdisciplinarity, both internally and in contribution to other fields, including information science. A linguistic perspective is beneficial in many ways in information science, since it examines the relationship between the forms of meaningful expressions and their social, cognitive, institutional, and communicative context, these being two perspectives on information that are actively studied, to different degrees, in information science. Examples of issues relevant to information science are presented for which the approach taken under a linguistic perspective is illustrated.
    Date
    27. 8.2011 14:22:33
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
    Type
    a
  10. Riloff, E.: ¬An empirical study of automated dictionary construction for information extraction in three domains (1996) 0.03
    0.031936046 = product of:
      0.079840116 = sum of:
        0.00770594 = weight(_text_:a in 6752) [ClassicSimilarity], result of:
          0.00770594 = score(doc=6752,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14413087 = fieldWeight in 6752, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=6752)
        0.072134174 = sum of:
          0.021876005 = weight(_text_:information in 6752) [ClassicSimilarity], result of:
            0.021876005 = score(doc=6752,freq=6.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.2687516 = fieldWeight in 6752, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0625 = fieldNorm(doc=6752)
          0.050258167 = weight(_text_:22 in 6752) [ClassicSimilarity], result of:
            0.050258167 = score(doc=6752,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.30952093 = fieldWeight in 6752, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=6752)
      0.4 = coord(2/5)
    
    Abstract
    AutoSlog is a system that addresses the knowledge engineering bottleneck for information extraction. AutoSlog automatically creates domain specific dictionaries for information extraction, given an appropriate training corpus. Describes experiments with AutoSlog in terrorism, joint ventures and microelectronics domains. Compares the performance of AutoSlog across the 3 domains, discusses the lessons learned and presents results from 2 experiments which demonstrate that novice users can generate effective dictionaries using AutoSlog
    Date
    6. 3.1997 16:22:15
    Type
    a
  11. Haas, S.W.: Natural language processing : toward large-scale, robust systems (1996) 0.03
    0.030330315 = product of:
      0.07582579 = sum of:
        0.00770594 = weight(_text_:a in 7415) [ClassicSimilarity], result of:
          0.00770594 = score(doc=7415,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14413087 = fieldWeight in 7415, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=7415)
        0.06811985 = sum of:
          0.017861681 = weight(_text_:information in 7415) [ClassicSimilarity], result of:
            0.017861681 = score(doc=7415,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.21943474 = fieldWeight in 7415, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0625 = fieldNorm(doc=7415)
          0.050258167 = weight(_text_:22 in 7415) [ClassicSimilarity], result of:
            0.050258167 = score(doc=7415,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.30952093 = fieldWeight in 7415, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=7415)
      0.4 = coord(2/5)
    
    Abstract
    State of the art review of natural language processing updating an earlier review published in ARIST 22(1987). Discusses important developments that have allowed for significant advances in the field of natural language processing: materials and resources; knowledge based systems and statistical approaches; and a strong emphasis on evaluation. Reviews some natural language processing applications and common problems still awaiting solution. Considers closely related applications such as language generation and th egeneration phase of machine translation which face the same problems as natural language processing. Covers natural language methodologies for information retrieval only briefly
    Source
    Annual review of information science and technology. 31(1996), S.83-119
    Type
    a
  12. Liddy, E.D.: Natural language processing for information retrieval and knowledge discovery (1998) 0.03
    0.030172069 = product of:
      0.07543017 = sum of:
        0.0067426977 = weight(_text_:a in 2345) [ClassicSimilarity], result of:
          0.0067426977 = score(doc=2345,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12611452 = fieldWeight in 2345, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2345)
        0.06868747 = sum of:
          0.024711575 = weight(_text_:information in 2345) [ClassicSimilarity], result of:
            0.024711575 = score(doc=2345,freq=10.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.3035872 = fieldWeight in 2345, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2345)
          0.043975897 = weight(_text_:22 in 2345) [ClassicSimilarity], result of:
            0.043975897 = score(doc=2345,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.2708308 = fieldWeight in 2345, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2345)
      0.4 = coord(2/5)
    
    Abstract
    Natural language processing (NLP) is a powerful technology for the vital tasks of information retrieval (IR) and knowledge discovery (KD) which, in turn, feed the visualization systems of the present and future and enable knowledge workers to focus more of their time on the vital tasks of analysis and prediction
    Date
    22. 9.1997 19:16:05
    Imprint
    Urbana-Champaign, IL : Illinois University at Urbana-Champaign, Graduate School of Library and Information Science
    Source
    Visualizing subject access for 21st century information resources: Papers presented at the 1997 Clinic on Library Applications of Data Processing, 2-4 Mar 1997, Graduate School of Library and Information Science, University of Illinois at Urbana-Champaign. Ed.: P.A. Cochrane et al
    Type
    a
  13. Wanner, L.: Lexical choice in text generation and machine translation (1996) 0.03
    0.027334882 = product of:
      0.0683372 = sum of:
        0.005448922 = weight(_text_:a in 8521) [ClassicSimilarity], result of:
          0.005448922 = score(doc=8521,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10191591 = fieldWeight in 8521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=8521)
        0.06288828 = sum of:
          0.012630116 = weight(_text_:information in 8521) [ClassicSimilarity], result of:
            0.012630116 = score(doc=8521,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.1551638 = fieldWeight in 8521, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0625 = fieldNorm(doc=8521)
          0.050258167 = weight(_text_:22 in 8521) [ClassicSimilarity], result of:
            0.050258167 = score(doc=8521,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.30952093 = fieldWeight in 8521, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=8521)
      0.4 = coord(2/5)
    
    Abstract
    Presents the state of the art in lexical choice research in text generation and machine translation. Discusses the existing implementations with respect to: the place of lexical choice in the overall generation rates; the information flow within the generation process and the consequences thereof for lexical choice; the internal organization of the lexical choice process; and the phenomena covered by lexical choice. Identifies possible future directions in lexical choice research
    Date
    31. 7.1996 9:22:19
    Type
    a
  14. Morris, V.: Automated language identification of bibliographic resources (2020) 0.03
    0.027334882 = product of:
      0.0683372 = sum of:
        0.005448922 = weight(_text_:a in 5749) [ClassicSimilarity], result of:
          0.005448922 = score(doc=5749,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10191591 = fieldWeight in 5749, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=5749)
        0.06288828 = sum of:
          0.012630116 = weight(_text_:information in 5749) [ClassicSimilarity], result of:
            0.012630116 = score(doc=5749,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.1551638 = fieldWeight in 5749, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0625 = fieldNorm(doc=5749)
          0.050258167 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
            0.050258167 = score(doc=5749,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.30952093 = fieldWeight in 5749, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=5749)
      0.4 = coord(2/5)
    
    Abstract
    This article describes experiments in the use of machine learning techniques at the British Library to assign language codes to catalog records, in order to provide information about the language of content of the resources described. In the first phase of the project, language codes were assigned to 1.15 million records with 99.7% confidence. The automated language identification tools developed will be used to contribute to future enhancement of over 4 million legacy records.
    Date
    2. 3.2020 19:04:22
    Type
    a
  15. Doszkocs, T.E.; Zamora, A.: Dictionary services and spelling aids for Web searching (2004) 0.03
    0.026087334 = product of:
      0.06521834 = sum of:
        0.009632425 = weight(_text_:a in 2541) [ClassicSimilarity], result of:
          0.009632425 = score(doc=2541,freq=16.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18016359 = fieldWeight in 2541, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2541)
        0.055585913 = sum of:
          0.011163551 = weight(_text_:information in 2541) [ClassicSimilarity], result of:
            0.011163551 = score(doc=2541,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.13714671 = fieldWeight in 2541, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2541)
          0.044422362 = weight(_text_:22 in 2541) [ClassicSimilarity], result of:
            0.044422362 = score(doc=2541,freq=4.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.27358043 = fieldWeight in 2541, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2541)
      0.4 = coord(2/5)
    
    Abstract
    The Specialized Information Services Division (SIS) of the National Library of Medicine (NLM) provides Web access to more than a dozen scientific databases on toxicology and the environment on TOXNET . Search queries on TOXNET often include misspelled or variant English words, medical and scientific jargon and chemical names. Following the example of search engines like Google and ClinicalTrials.gov, we set out to develop a spelling "suggestion" system for increased recall and precision in TOXNET searching. This paper describes development of dictionary technology that can be used in a variety of applications such as orthographic verification, writing aid, natural language processing, and information storage and retrieval. The design of the technology allows building complex applications using the components developed in the earlier phases of the work in a modular fashion without extensive rewriting of computer code. Since many of the potential applications envisioned for this work have on-line or web-based interfaces, the dictionaries and other computer components must have fast response, and must be adaptable to open-ended database vocabularies, including chemical nomenclature. The dictionary vocabulary for this work was derived from SIS and other databases and specialized resources, such as NLM's Unified Medical Language Systems (UMLS) . The resulting technology, A-Z Dictionary (AZdict), has three major constituents: 1) the vocabulary list, 2) the word attributes that define part of speech and morphological relationships between words in the list, and 3) a set of programs that implements the retrieval of words and their attributes, and determines similarity between words (ChemSpell). These three components can be used in various applications such as spelling verification, spelling aid, part-of-speech tagging, paraphrasing, and many other natural language processing functions.
    Date
    14. 8.2004 17:22:56
    Source
    Online. 28(2004) no.3, S.22-29
    Type
    a
  16. Schneider, J.W.; Borlund, P.: ¬A bibliometric-based semiautomatic approach to identification of candidate thesaurus terms : parsing and filtering of noun phrases from citation contexts (2005) 0.03
    0.025314135 = product of:
      0.063285336 = sum of:
        0.008258085 = weight(_text_:a in 156) [ClassicSimilarity], result of:
          0.008258085 = score(doc=156,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 156, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=156)
        0.05502725 = sum of:
          0.011051352 = weight(_text_:information in 156) [ClassicSimilarity], result of:
            0.011051352 = score(doc=156,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.13576832 = fieldWeight in 156, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=156)
          0.043975897 = weight(_text_:22 in 156) [ClassicSimilarity], result of:
            0.043975897 = score(doc=156,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.2708308 = fieldWeight in 156, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=156)
      0.4 = coord(2/5)
    
    Abstract
    The present study investigates the ability of a bibliometric based semi-automatic method to select candidate thesaurus terms from citation contexts. The method consists of document co-citation analysis, citation context analysis, and noun phrase parsing. The investigation is carried out within the specialty area of periodontology. The results clearly demonstrate that the method is able to select important candidate thesaurus terms within the chosen specialty area.
    Date
    8. 3.2007 19:55:22
    Source
    Context: nature, impact and role. 5th International Conference an Conceptions of Library and Information Sciences, CoLIS 2005 Glasgow, UK, June 2005. Ed. by F. Crestani u. I. Ruthven
    Type
    a
  17. Bian, G.-W.; Chen, H.-H.: Cross-language information access to multilingual collections on the Internet (2000) 0.02
    0.024471594 = product of:
      0.061178982 = sum of:
        0.007078358 = weight(_text_:a in 4436) [ClassicSimilarity], result of:
          0.007078358 = score(doc=4436,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.13239266 = fieldWeight in 4436, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4436)
        0.054100625 = sum of:
          0.016407004 = weight(_text_:information in 4436) [ClassicSimilarity], result of:
            0.016407004 = score(doc=4436,freq=6.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.20156369 = fieldWeight in 4436, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=4436)
          0.037693623 = weight(_text_:22 in 4436) [ClassicSimilarity], result of:
            0.037693623 = score(doc=4436,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 4436, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=4436)
      0.4 = coord(2/5)
    
    Abstract
    Language barrier is the major problem that people face in searching for, retrieving, and understanding multilingual collections on the Internet. This paper deals with query translation and document translation in a Chinese-English information retrieval system called MTIR. Bilingual dictionary and monolingual corpus-based approaches are adopted to select suitable tranlated query terms. A machine transliteration algorithm is introduced to resolve proper name searching. We consider several design issues for document translation, including which material is translated, what roles the HTML tags play in translation, what the tradeoff is between the speed performance and the translation performance, and what from the translated result is presented in. About 100.000 Web pages translated in the last 4 months of 1997 are used for quantitative study of online and real-time Web page translation
    Date
    16. 2.2000 14:22:39
    Source
    Journal of the American Society for Information Science. 51(2000) no.3, S.281-296
    Type
    a
  18. Ruge, G.: ¬A spreading activation network for automatic generation of thesaurus relationships (1991) 0.02
    0.024196828 = product of:
      0.06049207 = sum of:
        0.01651617 = weight(_text_:a in 4506) [ClassicSimilarity], result of:
          0.01651617 = score(doc=4506,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.3089162 = fieldWeight in 4506, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=4506)
        0.043975897 = product of:
          0.087951794 = sum of:
            0.087951794 = weight(_text_:22 in 4506) [ClassicSimilarity], result of:
              0.087951794 = score(doc=4506,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.5416616 = fieldWeight in 4506, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4506)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    8.10.2000 11:52:22
    Source
    Library science with a slant to documentation. 28(1991) no.4, S.125-130
    Type
    a
  19. Dorr, B.J.: Large-scale dictionary construction for foreign language tutoring and interlingual machine translation (1997) 0.02
    0.022135837 = product of:
      0.055339593 = sum of:
        0.008173384 = weight(_text_:a in 3244) [ClassicSimilarity], result of:
          0.008173384 = score(doc=3244,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 3244, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3244)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 3244) [ClassicSimilarity], result of:
            0.009472587 = score(doc=3244,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 3244, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=3244)
          0.037693623 = weight(_text_:22 in 3244) [ClassicSimilarity], result of:
            0.037693623 = score(doc=3244,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 3244, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3244)
      0.4 = coord(2/5)
    
    Abstract
    Describes techniques for automatic construction of dictionaries for use in large-scale foreign language tutoring (FLT) and interlingual machine translation (MT) systems. The dictionaries are based on a language independent representation called lexical conceptual structure (LCS). Demonstrates that synonymous verb senses share distribution patterns. Shows how the syntax-semantics relation can be used to develop a lexical acquisition approach that contributes both toward the enrichment of existing online resources and toward the development of lexicons containing more complete information than is provided in any of these resources alone. Describes the structure of the LCS and shows how this representation is used in FLT and MT. Focuses on the problem of building LCS dictionaries for large-scale FLT and MT. Describes authoring tools for manual and semi-automatic construction of LCS dictionaries. Presents an approach that uses linguistic techniques for building word definitions automatically. The techniques have been implemented as part of a set of lixicon-development tools used in the MILT FLT project
    Date
    31. 7.1996 9:22:19
    Type
    a
  20. Lawrie, D.; Mayfield, J.; McNamee, P.; Oard, P.W.: Cross-language person-entity linking from 20 languages (2015) 0.02
    0.022135837 = product of:
      0.055339593 = sum of:
        0.008173384 = weight(_text_:a in 1848) [ClassicSimilarity], result of:
          0.008173384 = score(doc=1848,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 1848, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1848)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 1848) [ClassicSimilarity], result of:
            0.009472587 = score(doc=1848,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 1848, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=1848)
          0.037693623 = weight(_text_:22 in 1848) [ClassicSimilarity], result of:
            0.037693623 = score(doc=1848,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 1848, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=1848)
      0.4 = coord(2/5)
    
    Abstract
    The goal of entity linking is to associate references to an entity that is found in unstructured natural language content to an authoritative inventory of known entities. This article describes the construction of 6 test collections for cross-language person-entity linking that together span 22 languages. Fully automated components were used together with 2 crowdsourced validation stages to affordably generate ground-truth annotations with an accuracy comparable to that of a completely manual process. The resulting test collections each contain between 642 (Arabic) and 2,361 (Romanian) person references in non-English texts for which the correct resolution in English Wikipedia is known, plus a similar number of references for which no correct resolution into English Wikipedia is believed to exist. Fully automated cross-language person-name linking experiments with 20 non-English languages yielded a resolution accuracy of between 0.84 (Serbian) and 0.98 (Romanian), which compares favorably with previously reported cross-language entity linking results for Spanish.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.6, S.1106-1123
    Type
    a

Languages

Types

  • a 629
  • el 79
  • m 56
  • s 27
  • x 12
  • p 7
  • b 2
  • d 2
  • pat 1
  • r 1
  • More… Less…

Subjects

Classifications