Search (82 results, page 1 of 5)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × year_i:[2000 TO 2010}
  1. Olson, H.A.: Cultural discourse of classification : indigeous alternatives to the tradition of Aristotle, Durkheim, and Foucault (2001) 0.07
    0.07298431 = product of:
      0.1216405 = sum of:
        0.004767807 = weight(_text_:a in 1594) [ClassicSimilarity], result of:
          0.004767807 = score(doc=1594,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.089176424 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
        0.11134702 = weight(_text_:91 in 1594) [ClassicSimilarity], result of:
          0.11134702 = score(doc=1594,freq=2.0), product of:
            0.25837386 = queryWeight, product of:
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.046368346 = queryNorm
            0.43095312 = fieldWeight in 1594, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5722036 = idf(docFreq=456, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1594)
        0.005525676 = product of:
          0.011051352 = sum of:
            0.011051352 = weight(_text_:information in 1594) [ClassicSimilarity], result of:
              0.011051352 = score(doc=1594,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13576832 = fieldWeight in 1594, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1594)
          0.5 = coord(1/2)
      0.6 = coord(3/5)
    
    Imprint
    Medford, NJ : Information Today
    Pages
    S.91-106
    Type
    a
  2. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.02
    0.022135837 = product of:
      0.055339593 = sum of:
        0.008173384 = weight(_text_:a in 780) [ClassicSimilarity], result of:
          0.008173384 = score(doc=780,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15287387 = fieldWeight in 780, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.04716621 = sum of:
          0.009472587 = weight(_text_:information in 780) [ClassicSimilarity], result of:
            0.009472587 = score(doc=780,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.116372846 = fieldWeight in 780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
          0.037693623 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
            0.037693623 = score(doc=780,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.23214069 = fieldWeight in 780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
      0.4 = coord(2/5)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
    Type
    a
  3. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.02
    0.021239052 = product of:
      0.053097628 = sum of:
        0.005898632 = weight(_text_:a in 3483) [ClassicSimilarity], result of:
          0.005898632 = score(doc=3483,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.11032722 = fieldWeight in 3483, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.047198996 = sum of:
          0.015787644 = weight(_text_:information in 3483) [ClassicSimilarity], result of:
            0.015787644 = score(doc=3483,freq=8.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.19395474 = fieldWeight in 3483, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3483)
          0.031411353 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
            0.031411353 = score(doc=3483,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.19345059 = fieldWeight in 3483, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3483)
      0.4 = coord(2/5)
    
    Abstract
    Classification is an activity that transcends time and space and that bridges the divisions between different languages and cultures, including the divisions between academic disciplines. Classificatory activity, however, serves different purposes in different situations. Classifications for infonnation retrieval can be called "professional" classifications and classifications in other fields can be called "naïve" classifications because they are developed by people who have no particular interest in classificatory issues. The general purpose of naïve classification systems is to discover new knowledge. In contrast, the general purpose of information retrieval classifications is to classify pre-existing knowledge. Different classificatory purposes may thus inform systems that are intended to span the cultural specifics of the globalized information society. This paper builds an previous research into the purposes and characteristics of naïve classifications. It describes some of the relationships between the purpose and context of a naive classification, the units of analysis used in it, and the theory that the context and the units of analysis imply.
    Footnote
    Vgl.: Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification". In: Knowledge organization. 37(2010) no.2, S.111-120.
    Pages
    S.19-22
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
    Type
    a
  4. Wang, Z.; Chaudhry, A.S.; Khoo, C.S.G.: Using classification schemes and thesauri to build an organizational taxonomy for organizing content and aiding navigation (2008) 0.02
    0.018914431 = product of:
      0.04728608 = sum of:
        0.005448922 = weight(_text_:a in 2346) [ClassicSimilarity], result of:
          0.005448922 = score(doc=2346,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10191591 = fieldWeight in 2346, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2346)
        0.041837156 = sum of:
          0.016708074 = weight(_text_:information in 2346) [ClassicSimilarity], result of:
            0.016708074 = score(doc=2346,freq=14.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.20526241 = fieldWeight in 2346, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.03125 = fieldNorm(doc=2346)
          0.025129084 = weight(_text_:22 in 2346) [ClassicSimilarity], result of:
            0.025129084 = score(doc=2346,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.15476047 = fieldWeight in 2346, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2346)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - Potential and benefits of classification schemes and thesauri in building organizational taxonomies cannot be fully utilized by organizations. Empirical data of building an organizational taxonomy by the top-down approach of using classification schemes and thesauri appear to be lacking. The paper seeks to make a contribution in this regard. Design/methodology/approach - A case study of building an organizational taxonomy was conducted in the information studies domain for the Division of Information Studies at Nanyang Technology University, Singapore. The taxonomy was built by using the Dewey Decimal Classification, the Information Science Taxonomy, two information systems taxonomies, and three thesauri (ASIS&T, LISA, and ERIC). Findings - Classification schemes and thesauri were found to be helpful in creating the structure and categories related to the subject facet of the taxonomy, but organizational community sources had to be consulted and several methods had to be employed. The organizational activities and stakeholders' needs had to be identified to determine the objectives, facets, and the subject coverage of the taxonomy. Main categories were determined by identifying the stakeholders' interests and consulting organizational community sources and domain taxonomies. Category terms were selected from terminologies of classification schemes, domain taxonomies, and thesauri against the stakeholders' interests. Hierarchical structures of the main categories were constructed in line with the stakeholders' perspectives and the navigational role taking advantage of structures/term relationships from classification schemes and thesauri. Categories were determined in line with the concepts and the hierarchical levels. Format of categories were uniformed according to a commonly used standard. The consistency principle was employed to make the taxonomy structure and categories neater. Validation of the draft taxonomy through consultations with the stakeholders further refined the taxonomy. Originality/value - No similar study could be traced in the literature. The steps and methods used in the taxonomy development, and the information studies taxonomy itself, will be helpful for library and information schools and other similar organizations in their effort to develop taxonomies for organizing content and aiding navigation on organizational sites.
    Date
    7.11.2008 15:22:04
    Theme
    Information Resources Management
    Type
    a
  5. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.02
    0.016293386 = product of:
      0.040733464 = sum of:
        0.0066735395 = weight(_text_:a in 2763) [ClassicSimilarity], result of:
          0.0066735395 = score(doc=2763,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12482099 = fieldWeight in 2763, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2763)
        0.034059923 = sum of:
          0.0089308405 = weight(_text_:information in 2763) [ClassicSimilarity], result of:
            0.0089308405 = score(doc=2763,freq=4.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.10971737 = fieldWeight in 2763, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.03125 = fieldNorm(doc=2763)
          0.025129084 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.025129084 = score(doc=2763,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.15476047 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2763)
      0.4 = coord(2/5)
    
    Abstract
    The different points of views an knowledge representation and organization from various research communities reflect underlying philosophies and paradigms in these communities. This paper reviews differences and relations in knowledge representation and organization and generalizes four paradigms-integrative and disintegrative pragmatism and integrative and disintegrative epistemologism. Examples such as classification, XML schemas, and ontologies are compared based an how they specify concepts, build data models, and encode knowledge organization structures. 1. Introduction Knowledge representation (KR) is a term that several research communities use to refer to somewhat different aspects of the same research area. The artificial intelligence (AI) community considers KR as simply "something to do with writing down, in some language or communications medium, descriptions or pictures that correspond in some salient way to the world or a state of the world" (Duce & Ringland, 1988, p. 3). It emphasizes the ways in which knowledge can be encoded in a computer program (Bench-Capon, 1990). For the library and information science (LIS) community, KR is literally the synonym of knowledge organization, i.e., KR is referred to as the process of organizing knowledge into classifications, thesauri, or subject heading lists. KR has another meaning in LIS: it "encompasses every type and method of indexing, abstracting, cataloguing, classification, records management, bibliography and the creation of textual or bibliographic databases for information retrieval" (Anderson, 1996, p. 336). Adding the social dimension to knowledge organization, Hjoerland (1997) states that knowledge is a part of human activities and tied to the division of labor in society, which should be the primary organization of knowledge. Knowledge organization in LIS is secondary or derived, because knowledge is organized in learned institutions and publications. These different points of views an KR suggest that an essential difference in the understanding of KR between both AI and LIS lies in the source of representationwhether KR targets human activities or derivatives (knowledge produced) from human activities. This difference also decides their difference in purpose-in AI KR is mainly computer-application oriented or pragmatic and the result of representation is used to support decisions an human activities, while in LIS KR is conceptually oriented or abstract and the result of representation is used for access to derivatives from human activities.
    Date
    12. 9.2004 17:22:35
    Type
    a
  6. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.012231203 = product of:
      0.030578006 = sum of:
        0.005448922 = weight(_text_:a in 5083) [ClassicSimilarity], result of:
          0.005448922 = score(doc=5083,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10191591 = fieldWeight in 5083, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=5083)
        0.025129084 = product of:
          0.050258167 = sum of:
            0.050258167 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.050258167 = score(doc=5083,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    27. 5.2007 22:19:35
    Type
    a
  7. Olson, H.A.: Sameness and difference : a cultural foundation of classification (2001) 0.01
    0.012098414 = product of:
      0.030246034 = sum of:
        0.008258085 = weight(_text_:a in 166) [ClassicSimilarity], result of:
          0.008258085 = score(doc=166,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 166, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=166)
        0.021987949 = product of:
          0.043975897 = sum of:
            0.043975897 = weight(_text_:22 in 166) [ClassicSimilarity], result of:
              0.043975897 = score(doc=166,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2708308 = fieldWeight in 166, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=166)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The idea of sameness is used to gather material in classifications. However, it is also used to separate what is different. Sameness and difference as guiding principles of classification seem obvious but are actually fundamental characteristics specifically related to Western culture. Sameness is not a singular factor, but has the potential to represent multiple characteristics or facets. This article explores the ramifications of which characteristics are used to define classifications and in what order. It explains the primacy of division by discipline, its origins in Western philosophy, and the cultural specificity that results. The Dewey Decimal Classification is used as an example throughout.
    Date
    10. 9.2000 17:38:22
    Type
    a
  8. Beghtol, C.: ¬The facet concept as a universal principle of subdivision (2006) 0.01
    0.009466315 = product of:
      0.023665786 = sum of:
        0.012614433 = weight(_text_:a in 1483) [ClassicSimilarity], result of:
          0.012614433 = score(doc=1483,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.23593865 = fieldWeight in 1483, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1483)
        0.011051352 = product of:
          0.022102704 = sum of:
            0.022102704 = weight(_text_:information in 1483) [ClassicSimilarity], result of:
              0.022102704 = score(doc=1483,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27153665 = fieldWeight in 1483, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1483)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Facet analysis has been one of the foremost contenders as a design principle for information retrieval classifications, both manual and electronic in the last fifty years. Evidence is presented that the facet concept has a claim to be considered as a method of subdivision that is cognitively available to human beings, regardless of language, culture, or academic discipline. The possibility that faceting is a universal method of subdivision enhances the claim that facet analysis as an unusually useful design principle for information retrieval classifications in any field. This possibility needs further investigation in an age when information access across boundaries is both necessary and possible.
    Source
    Knowledge organization, information systems and other essays: Professor A. Neelameghan Festschrift. Ed. by K.S. Raghavan and K.N. Prasad
    Type
    a
  9. Karamuftuoglu, M.: Need for a systemic theory of classification in information science (2007) 0.01
    0.00933737 = product of:
      0.023343425 = sum of:
        0.010812371 = weight(_text_:a in 615) [ClassicSimilarity], result of:
          0.010812371 = score(doc=615,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20223314 = fieldWeight in 615, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=615)
        0.012531055 = product of:
          0.02506211 = sum of:
            0.02506211 = weight(_text_:information in 615) [ClassicSimilarity], result of:
              0.02506211 = score(doc=615,freq=14.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3078936 = fieldWeight in 615, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=615)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In the article, the author aims to clarify some of the issues surrounding the discussion regarding the usefulness of a substantive classification theory in information science (IS) by means of a broad perspective. By utilizing a concrete example from the High Accuracy Retrieval from Documents (HARD) track of a Text REtrieval Conference (TREC), the author suggests that the bag of words approach to information retrieval (IR) and techniques such as relevance feedback have significant limitations in expressing and resolving complex user information needs. He argues that a comprehensive analysis of information needs involves explicating often-implicit assumptions made by the authors of scholarly documents, as well as everyday texts such as news articles. He also argues that progress in IS can be furthered by developing general theories that are applicable to multiple domains. The concrete example of application of the domain-analytic approach to subject analysis in IS to the aesthetic evaluation of works of information arts is used to support this argument.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.13, S.1977-1987
    Type
    a
  10. Jacob, E.K.: Classification and categorization : a difference that makes a difference (2004) 0.01
    0.009228281 = product of:
      0.0230707 = sum of:
        0.009535614 = weight(_text_:a in 834) [ClassicSimilarity], result of:
          0.009535614 = score(doc=834,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 834, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=834)
        0.013535086 = product of:
          0.027070172 = sum of:
            0.027070172 = weight(_text_:information in 834) [ClassicSimilarity], result of:
              0.027070172 = score(doc=834,freq=12.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3325631 = fieldWeight in 834, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=834)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Examination of the systemic properties and forms of interaction that characterize classification and categorization reveals fundamental syntactic differences between the structure of classification systems and the structure of categorization systems. These distinctions lead to meaningful differences in the contexts within which information can be apprehended and influence the semantic information available to the individual. Structural and semantic differences between classification and categorization are differences that make a difference in the information environment by influencing the functional activities of an information system and by contributing to its constitution as an information environment.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
    Type
    a
  11. Grove, A.: Taxonomy (2009) 0.01
    0.008245549 = product of:
      0.020613872 = sum of:
        0.008258085 = weight(_text_:a in 3846) [ClassicSimilarity], result of:
          0.008258085 = score(doc=3846,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 3846, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3846)
        0.012355788 = product of:
          0.024711575 = sum of:
            0.024711575 = weight(_text_:information in 3846) [ClassicSimilarity], result of:
              0.024711575 = score(doc=3846,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.3035872 = fieldWeight in 3846, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3846)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Taxonomy reflects the human instinct to organize. Once limited in Western culture to certain natural sciences, in the early twenty-first century, it has expanded to many domains, practices, and uses. Domains now include almost anything of interest, but particularly those motivated by business needs. Practices and uses include description, analysis, prediction, mapping terminology, information access, representation of knowledge, and tool-building. For information science, taxonomy is a powerful tool for connecting information content with information consumers effectively and efficiently.
    Source
    Encyclopedia of library and information sciences. 3rd ed. Ed.: M.J. Bates
    Type
    a
  12. Mills, J.: Faceted classification and logical division in information retrieval (2004) 0.01
    0.007891519 = product of:
      0.019728797 = sum of:
        0.009138121 = weight(_text_:a in 831) [ClassicSimilarity], result of:
          0.009138121 = score(doc=831,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 831, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=831)
        0.010590675 = product of:
          0.02118135 = sum of:
            0.02118135 = weight(_text_:information in 831) [ClassicSimilarity], result of:
              0.02118135 = score(doc=831,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2602176 = fieldWeight in 831, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=831)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The main object of the paper is to demonstrate in detail the role of classification in information retrieval (IR) and the design of classificatory structures by the application of logical division to all forms of the content of records, subject and imaginative. The natural product of such division is a faceted classification. The latter is seen not as a particular kind of library classification but the only viable form enabling the locating and relating of information to be optimally predictable. A detailed exposition of the practical steps in facet analysis is given, drawing on the experience of the new Bliss Classification (BC2). The continued existence of the library as a highly organized information store is assumed. But, it is argued, it must acknowledge the relevance of the revolution in library classification that has taken place. It considers also how alphabetically arranged subject indexes may utilize controlled use of categorical (generically inclusive) and syntactic relations to produce similarly predictable locating and relating systems for IR.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
    Type
    a
  13. Campbell, G.: ¬A queer eye for the faceted guy : how a universal classification principle can be applied to a distinct subculture (2004) 0.01
    0.0077183084 = product of:
      0.01929577 = sum of:
        0.009823184 = weight(_text_:a in 2639) [ClassicSimilarity], result of:
          0.009823184 = score(doc=2639,freq=26.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18373153 = fieldWeight in 2639, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2639)
        0.009472587 = product of:
          0.018945174 = sum of:
            0.018945174 = weight(_text_:information in 2639) [ClassicSimilarity], result of:
              0.018945174 = score(doc=2639,freq=18.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23274568 = fieldWeight in 2639, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2639)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The results of a small qualitative study of gay and lesbian information users suggest that facet analysis as it is increasingly practised in the field of information architecture provides a promising avenue for improving information access to gay and lesbian information resources. Findings indicated that gay and lesbian information users have an acute sense of categorization grounded in the need to identify gay-positive physical and social spaces, and in their finely-honed practices of detecting gay "facets" to general information themes. They are also, however, very flexible and adaptable in their application of gay-related facet values, which suggests that browsing systems will have to be designed with considerable care.
    Content
    1. Introduction The title of this paper is taken from a TV show which has gained considerable popularity in North America: A Queer Eye for the Straight Guy, in which a group of gay men subject a helpless straight male to a complete fashion makeover. In facet analysis, this would probably be seen as an "operation upon" something, and the Bliss Bibliographic Classification would place it roughly two-thirds of the way along its facet order, after "types" and "materials," but before "space" and "time." But the link between gay communities and facet analysis extends beyond the facetious title. As Web-based information resources for gay and lesbian users continue to grow, Web sites that cater to, or at least refrain from discriminating against gay and lesbian users are faced with a daunting challenge when trying to organize these diverse resources in a way that facilitates congenial browsing. And principles of faceted classification, with their emphasis an clear and consistent principles of subdivision and their care in defining the order of subdivisions, offer an important opportunity to use time-honoured classification principles to serve the growing needs of these communities. If faceted organization schemes are to work, however, we need to know more about gay and lesbian users, and how they categorize themselves and their information sources. This paper presents the results of an effort to learn more.
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
    Type
    a
  14. Broughton, V.: ¬The need for a faceted classification as the basis of all methods of information retrieval (2006) 0.01
    0.007471291 = product of:
      0.018678227 = sum of:
        0.009010308 = weight(_text_:a in 2874) [ClassicSimilarity], result of:
          0.009010308 = score(doc=2874,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1685276 = fieldWeight in 2874, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2874)
        0.009667919 = product of:
          0.019335838 = sum of:
            0.019335838 = weight(_text_:information in 2874) [ClassicSimilarity], result of:
              0.019335838 = score(doc=2874,freq=12.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.23754507 = fieldWeight in 2874, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2874)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - The aim of this article is to estimate the impact of faceted classification and the faceted analytical method on the development of various information retrieval tools over the latter part of the twentieth and early twenty-first centuries. Design/methodology/approach - The article presents an examination of various subject access tools intended for retrieval of both print and digital materials to determine whether they exhibit features of faceted systems. Some attention is paid to use of the faceted approach as a means of structuring information on commercial web sites. The secondary and research literature is also surveyed for commentary on and evaluation of facet analysis as a basis for the building of vocabulary and conceptual tools. Findings - The study finds that faceted systems are now very common, with a major increase in their use over the last 15 years. Most LIS subject indexing tools (classifications, subject heading lists and thesauri) now demonstrate features of facet analysis to a greater or lesser degree. A faceted approach is frequently taken to the presentation of product information on commercial web sites, and there is an independent strand of theory and documentation related to this application. There is some significant research on semi-automatic indexing and retrieval (query expansion and query formulation) using facet analytical techniques. Originality/value - This article provides an overview of an important conceptual approach to information retrieval, and compares different understandings and applications of this methodology.
    Footnote
    Beitrag in einem Themenheft: UK library & information schools: UCL SLAIS.
    Type
    a
  15. Beghtol, C.: Relationships in classificatory structure and meaning (2001) 0.01
    0.007004201 = product of:
      0.017510502 = sum of:
        0.010812371 = weight(_text_:a in 1138) [ClassicSimilarity], result of:
          0.010812371 = score(doc=1138,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20223314 = fieldWeight in 1138, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.0066981306 = product of:
          0.013396261 = sum of:
            0.013396261 = weight(_text_:information in 1138) [ClassicSimilarity], result of:
              0.013396261 = score(doc=1138,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16457605 = fieldWeight in 1138, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1138)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In a changing information environment, we need to reassess each element of bibliographic control, including classification theories and systems. Every classification system is a theoretical construct imposed an "reality." The classificatory relationships that are assumed to be valuable have generally received less attention than the topics included in the systems. Relationships are functions of both the syntactic and semantic axes of classification systems, and both explicit and implicit relationships are discussed. Examples are drawn from a number of different systems, both bibliographic and non-bibliographic, and the cultural warrant (i. e., the sociocultural context) of classification systems is examined. The part-whole relationship is discussed as an example of a universally valid concept that is treated as a component of the cultural warrant of a classification system.
    Series
    Information science and knowledge management; vol.2
    Type
    a
  16. Thellefsen, M.; Thellefsen, T.: Pragmatic semiotics and knowledge organization (2004) 0.01
    0.0068817483 = product of:
      0.01720437 = sum of:
        0.011678694 = weight(_text_:a in 3535) [ClassicSimilarity], result of:
          0.011678694 = score(doc=3535,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.21843673 = fieldWeight in 3535, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3535)
        0.005525676 = product of:
          0.011051352 = sum of:
            0.011051352 = weight(_text_:information in 3535) [ClassicSimilarity], result of:
              0.011051352 = score(doc=3535,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13576832 = fieldWeight in 3535, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3535)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The present paper presents a philosophical approach to knowledge organization, proposing the pragmatic doctrine of C.S. Peirce as basic analytical framework for knowledge domains. The theoretical framework discussed is related to the qualitative brauch of knowledge organization theory 1.e. within scope of Hjoerland's domain analytical view (Hjoerland and Albrechtsen 1995; Hjoerland 2002; Hjoerland 2004), and promote a general framework for analyzing domain knowledge and concepts. However, the concept of knowledge organization can be viewed in at least two perspectives, one that defines knowledge organization as an activity performed by a human actor e.g. an information specialist, and secondly a view that has the perspective of the inherent self-organizing structure of a knowledge domain the latter being investigated in the paper.
    Type
    a
  17. Paling, S.: Classification, rhetoric, and the classificatory horizon (2004) 0.01
    0.0068817483 = product of:
      0.01720437 = sum of:
        0.011678694 = weight(_text_:a in 836) [ClassicSimilarity], result of:
          0.011678694 = score(doc=836,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.21843673 = fieldWeight in 836, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=836)
        0.005525676 = product of:
          0.011051352 = sum of:
            0.011051352 = weight(_text_:information in 836) [ClassicSimilarity], result of:
              0.011051352 = score(doc=836,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13576832 = fieldWeight in 836, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=836)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Bibliography provides a compelling vantage from which to study the interconnection of classification, rhetoric, and the making of knowledge. Bibliography, and the related activities of classification and retrieval, bears a direct relationship to textual studies and rhetoric. The paper examines this relationship by briefly tracing the development of bibliography forward into issues concomitant with the emergence of classification for retrieval. A striking similarity to problems raised in rhetoric and which spring from common concerns and intellectual sources is demonstrated around Gadamer's notion of intellectual horizon. Classification takes place within a horizon of material conditions and social constraints that are best viewed through a hermeneutic or deconstructive lens, termed the "classificatory horizon."
    Footnote
    Artikel in einem Themenheft: The philosophy of information
    Type
    a
  18. McIlwaine, I.C.: ¬A question of place (2004) 0.01
    0.0066757645 = product of:
      0.01668941 = sum of:
        0.0127425 = weight(_text_:a in 2650) [ClassicSimilarity], result of:
          0.0127425 = score(doc=2650,freq=28.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.23833402 = fieldWeight in 2650, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2650)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 2650) [ClassicSimilarity], result of:
              0.007893822 = score(doc=2650,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 2650, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2650)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper looks at the problems raised by maintaining an Area Table in a general scheme of classification. It examines the tools available to assist in producing a standardized listing and demonstrates how recent developments in the Universal Decimal Classification enable users to have a retrieval tool suitable for use in a networked environment which acts as both a gazetteer and a classification.
    Content
    1. Introduction The representation of place in classification schemes presents a number of problems. This paper examines some of them and presents different ways in which a solution may be sought. Firstly, what is meant by place? The simple answer is a geographical area, large or small. The reality is not so simple. Place, or Topos to Aristotle was more than just an area, it was a state of mind. But even staying an the less philosophical plane, the way in which a place can be expressed is infinitely variable. Toponymy is a well defined field of study, comparable with taxonomy in the biological sciences. It comprehends the proper name by which any geographical entity is known, and part of the world, feature of earth's surface, organic aggregate (reef, forest) an organizational unit (country, borough, diocese), limits of Earth (poles, hemispheres) parts of Earth (oceans, continents), lakes, mountain passes, capital cities or sea parts.
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
    Type
    a
  19. Olson, H.A.: ¬The ubiquitous hierarchy : an army to overcome the threat of a mob (2004) 0.01
    0.006654713 = product of:
      0.016636781 = sum of:
        0.00770594 = weight(_text_:a in 833) [ClassicSimilarity], result of:
          0.00770594 = score(doc=833,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14413087 = fieldWeight in 833, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=833)
        0.0089308405 = product of:
          0.017861681 = sum of:
            0.017861681 = weight(_text_:information in 833) [ClassicSimilarity], result of:
              0.017861681 = score(doc=833,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21943474 = fieldWeight in 833, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=833)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This article explores the connections between Melvil Dewey and Hegelianism and Charles Cutter and the Scottish Common Sense philosophers. It traces the practice of hierarchy from these philosophical influences to Dewey and Cutter and their legacy to today's Dewey Decimal Classification and Library of Congress Subject Headings. The ubiquity of hierarchy is linked to Dewey's and Cutter's metaphor of organizing the mob of information into an orderly army using the tool of logic.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
    Type
    a
  20. Beghtol, C.: Classification for information retrieval and classification for knowledge discovery : relationships between "professional" and "naïve" classifications (2003) 0.01
    0.0065762657 = product of:
      0.016440663 = sum of:
        0.0076151006 = weight(_text_:a in 3021) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=3021,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 3021, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3021)
        0.008825562 = product of:
          0.017651124 = sum of:
            0.017651124 = weight(_text_:information in 3021) [ClassicSimilarity], result of:
              0.017651124 = score(doc=3021,freq=10.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.21684799 = fieldWeight in 3021, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3021)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Classification is a transdisciplinary activity that occurs during all human pursuits. Classificatory activity, however, serves different purposes in different situations. In information retrieval, the primary purpose of classification is to find knowledge that already exists, but one of the purposes of classification in other fields is to discover new knowledge. In this paper, classifications for information retrieval are called "professional" classifications because they are devised by people who have a professional interest in classification, and classifications for knowledge discovery are called "naive" classifications because they are devised by people who have no particular interest in studying classification as an end in itself. This paper compares the overall purposes and methods of these two kinds of classifications and provides a general model of the relationships between the two kinds of classificatory activity in the context of information studies. This model addresses issues of the influence of scholarly activity and communication an the creation and revision of classifications for the purposes of information retrieval and for the purposes of knowledge discovery. Further comparisons elucidate the relationships between the universality of classificatory methods and the specific purposes served by naive and professional classification systems.
    Footnote
    Vgl. Stellungnahme dazu in: Hjoerland, B., J. Nicolaisen: Scientific and scholarly classifications are not "naïve": a comment to Beghtol (2003). In: Knowledge organization. 31(2004) no.1, S.55-61.
    Type
    a

Languages

  • e 80
  • chi 1
  • i 1
  • More… Less…

Types

  • a 69
  • m 8
  • el 4
  • s 2
  • b 1
  • More… Less…