Search (47 results, page 1 of 3)

  • × theme_ss:"Universale Facettenklassifikationen"
  • × year_i:[2010 TO 2020}
  1. Perugini, S.: Supporting multiple paths to objects in information hierarchies : faceted classification, faceted search, and symbolic links (2010) 0.03
    0.029734675 = product of:
      0.074336685 = sum of:
        0.008258085 = weight(_text_:a in 4227) [ClassicSimilarity], result of:
          0.008258085 = score(doc=4227,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1544581 = fieldWeight in 4227, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4227)
        0.0660786 = sum of:
          0.022102704 = weight(_text_:information in 4227) [ClassicSimilarity], result of:
            0.022102704 = score(doc=4227,freq=8.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.27153665 = fieldWeight in 4227, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4227)
          0.043975897 = weight(_text_:22 in 4227) [ClassicSimilarity], result of:
            0.043975897 = score(doc=4227,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.2708308 = fieldWeight in 4227, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=4227)
      0.4 = coord(2/5)
    
    Abstract
    We present three fundamental, interrelated approaches to support multiple access paths to each terminal object in information hierarchies: faceted classification, faceted search, and web directories with embedded symbolic links. This survey aims to demonstrate how each approach supports users who seek information from multiple perspectives. We achieve this by exploring each approach, the relationships between these approaches, including tradeoffs, and how they can be used in concert, while focusing on a core set of hypermedia elements common to all. This approach provides a foundation from which to study, understand, and synthesize applications which employ these techniques. This survey does not aim to be comprehensive, but rather focuses on thematic issues.
    Source
    Information processing and management. 46(2010) no.1, S.22-43
    Type
    a
  2. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.03
    0.026275357 = product of:
      0.065688394 = sum of:
        0.010661141 = weight(_text_:a in 632) [ClassicSimilarity], result of:
          0.010661141 = score(doc=632,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19940455 = fieldWeight in 632, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=632)
        0.05502725 = sum of:
          0.011051352 = weight(_text_:information in 632) [ClassicSimilarity], result of:
            0.011051352 = score(doc=632,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.13576832 = fieldWeight in 632, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0546875 = fieldNorm(doc=632)
          0.043975897 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
            0.043975897 = score(doc=632,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.2708308 = fieldWeight in 632, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=632)
      0.4 = coord(2/5)
    
    Abstract
    This paper maps the concepts "space" and "dimensionality" in classifications, in particular in visualizations hereof, from a historical perspective. After a historical excursion in the domain of classification theory of what in mathematics is known as dimensionality reduction in representations of a single universe of knowledge, its potentiality will be explored for information retrieval and navigation in the multiverse of the World Wide Web.
    Content
    This paper is an adaptation and augmented version of a paper presented at the NASKO 2011 conference: Charles van den Heuvel. 2011. Multidimensional classifications: Past and future conceptualizations and visualizations. In Smiraglia, Richard P., ed. Proceedings from North American Symposium on Knowledge Organization, Vol. 3. Toronto, Canada, pp. 105-21. Vgl.: http://www.ergon-verlag.de/isko_ko/downloads/ko_39_2012_6_e.pdf.
    Date
    22. 2.2013 11:31:25
    Type
    a
  3. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.02
    0.019575043 = product of:
      0.048937604 = sum of:
        0.009632425 = weight(_text_:a in 3739) [ClassicSimilarity], result of:
          0.009632425 = score(doc=3739,freq=16.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18016359 = fieldWeight in 3739, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.039305177 = sum of:
          0.007893822 = weight(_text_:information in 3739) [ClassicSimilarity], result of:
            0.007893822 = score(doc=3739,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.09697737 = fieldWeight in 3739, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
          0.031411353 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
            0.031411353 = score(doc=3739,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.19345059 = fieldWeight in 3739, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
      0.4 = coord(2/5)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
    Type
    a
  4. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.02
    0.018446533 = product of:
      0.04611633 = sum of:
        0.0068111527 = weight(_text_:a in 1418) [ClassicSimilarity], result of:
          0.0068111527 = score(doc=1418,freq=8.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.12739488 = fieldWeight in 1418, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.039305177 = sum of:
          0.007893822 = weight(_text_:information in 1418) [ClassicSimilarity], result of:
            0.007893822 = score(doc=1418,freq=2.0), product of:
              0.08139861 = queryWeight, product of:
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.046368346 = queryNorm
              0.09697737 = fieldWeight in 1418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                1.7554779 = idf(docFreq=20772, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1418)
          0.031411353 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
            0.031411353 = score(doc=1418,freq=2.0), product of:
              0.16237405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046368346 = queryNorm
              0.19345059 = fieldWeight in 1418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1418)
      0.4 = coord(2/5)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  5. Tennis, J.T.: Facets and fugit tempus : considering time's effect on faceted classification schemes (2012) 0.01
    0.013134009 = product of:
      0.03283502 = sum of:
        0.00770594 = weight(_text_:a in 826) [ClassicSimilarity], result of:
          0.00770594 = score(doc=826,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14413087 = fieldWeight in 826, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=826)
        0.025129084 = product of:
          0.050258167 = sum of:
            0.050258167 = weight(_text_:22 in 826) [ClassicSimilarity], result of:
              0.050258167 = score(doc=826,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.30952093 = fieldWeight in 826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=826)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Date
    2. 6.2013 18:33:22
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan
    Type
    a
  6. Dousa, T.M.; Ibekwe-SanJuan, F.: Epistemological and methodological eclecticism in the construction of knowledge organization systems (KOSs) : the case of analytico-synthetic KOSs (2014) 0.01
    0.008641724 = product of:
      0.021604309 = sum of:
        0.005898632 = weight(_text_:a in 1417) [ClassicSimilarity], result of:
          0.005898632 = score(doc=1417,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.11032722 = fieldWeight in 1417, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1417)
        0.015705677 = product of:
          0.031411353 = sum of:
            0.031411353 = weight(_text_:22 in 1417) [ClassicSimilarity], result of:
              0.031411353 = score(doc=1417,freq=2.0), product of:
                0.16237405 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19345059 = fieldWeight in 1417, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1417)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    In recent years, Hjørland has developed a typology of basic epistemological approaches to KO that identifies four basic positions - empiricism, rationalism, historicism/hermeneutics, and pragmatism -with which to characterize the epistemological bases and methodological orientation of KOSs. Although scholars of KO have noted that the design of a single KOS may incorporate epistemological-methodological features from more than one of these approaches, studies of concrete examples of epistemologico-methodological eclecticism have been rare. In this paper, we consider the phenomenon of epistemologico-methodological eclecticism in one theoretically significant family of KOSs - namely analytico-synthetic, or faceted, KOSs - by examining two cases - Julius Otto Kaiser's method of Systematic Indexing (SI) and Brian Vickery's method of facet analysis (FA) for document classification. We show that both of these systems combined classical features of rationalism with elements of empiricism and pragmatism and argue that such eclecticism is the norm, rather than the exception, for such KOSs in general.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  7. LaBarre, K.: Facet analysis (2010) 0.01
    0.008234787 = product of:
      0.020586967 = sum of:
        0.009535614 = weight(_text_:a in 1596) [ClassicSimilarity], result of:
          0.009535614 = score(doc=1596,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17835285 = fieldWeight in 1596, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.109375 = fieldNorm(doc=1596)
        0.011051352 = product of:
          0.022102704 = sum of:
            0.022102704 = weight(_text_:information in 1596) [ClassicSimilarity], result of:
              0.022102704 = score(doc=1596,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.27153665 = fieldWeight in 1596, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1596)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Annual review of information science and technology. 44(2010) no.1, S.243-284
    Type
    a
  8. Dahlberg, I.: Why a new universal classification system is needed (2017) 0.01
    0.0073902505 = product of:
      0.018475626 = sum of:
        0.010661141 = weight(_text_:a in 3614) [ClassicSimilarity], result of:
          0.010661141 = score(doc=3614,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.19940455 = fieldWeight in 3614, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3614)
        0.007814486 = product of:
          0.015628971 = sum of:
            0.015628971 = weight(_text_:information in 3614) [ClassicSimilarity], result of:
              0.015628971 = score(doc=3614,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1920054 = fieldWeight in 3614, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3614)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Research history of the last 70 years highlights various systems for contents assessment and retrieval of scientific literature, such as universal classifications, thesauri, ontologies etc., which have followed developments of their own, notwithstanding a general trend towards interoperability, i.e. either to become instruments for cooperation or to widen their scope to encompass neighbouring fields within their framework. In the case of thesauri and ontologies, the endeavour to upgrade them into a universal system was bound to miscarry. This paper purports to indicate ways to gain from past experience and possibly rally material achievements while updating and promoting the ontologically-based faceted Information Coding Classification as a progressive universal system fit for meeting whatever requirements in the fields of information and science at large.
    Type
    a
  9. Giri, K.; Gokhale, P.: Developing a banking service ontology using Protégé, an open source software (2015) 0.01
    0.0067616524 = product of:
      0.01690413 = sum of:
        0.009010308 = weight(_text_:a in 2793) [ClassicSimilarity], result of:
          0.009010308 = score(doc=2793,freq=14.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1685276 = fieldWeight in 2793, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2793)
        0.007893822 = product of:
          0.015787644 = sum of:
            0.015787644 = weight(_text_:information in 2793) [ClassicSimilarity], result of:
              0.015787644 = score(doc=2793,freq=8.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.19395474 = fieldWeight in 2793, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2793)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Computers have transformed from single isolated devices to entry points into a worldwide network of information exchange. Consequently, support in the exchange of data, information, and knowledge is becoming the key issue in computer technology today. The increasing volume of data available on the Web makes information retrieval a tedious and difficult task. Researchers are now exploring the possibility of creating a semantic web, in which meaning is made explicit, allowing machines to process and integrate web resources intelligently. The vision of the semantic web introduces the next generation of the Web by establishing a layer of machine-understandable data. The success of the semantic web depends on the easy creation, integration and use of semantic data, which will depend on web ontology. The faceted approach towards analyzing and representing knowledge given by S R Ranganathan would be useful in this regard. Ontology development in different fields is one such area where this approach given by Ranganathan could be applied. This paper presents a case of developing ontology for the field of banking.
    Source
    Annals of library and information studies. 62(2015) no.4, S.281-285
    Type
    a
  10. Dahlberg, I.: Information Coding Classification : Geschichtliches, Prinzipien, Inhaltliches (2010) 0.01
    0.00655477 = product of:
      0.016386924 = sum of:
        0.005448922 = weight(_text_:a in 4057) [ClassicSimilarity], result of:
          0.005448922 = score(doc=4057,freq=2.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.10191591 = fieldWeight in 4057, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4057)
        0.010938003 = product of:
          0.021876005 = sum of:
            0.021876005 = weight(_text_:information in 4057) [ClassicSimilarity], result of:
              0.021876005 = score(doc=4057,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.2687516 = fieldWeight in 4057, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4057)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Der Beitrag umfasst eine Einführung in das Verständnis der Information Coding Classification (ICC), einer Universalklassifikation von Wissensgebieten. Er enthält (1) Entstehungsgeschichte (1970 bis 1977), (2) ihre Prinzipien: Begriffe, Begriffsbeziehungen, Notation, Hauptklassen als Objektbereiche in Integrationsstufen, Systemstellenplan als Systematifikator mit neun Aspekten zur Untergliederung, Verbindungsmöglichkeiten mit anderen Systemen, Systemstellen zur Darstellung von Inter- und Transdisziplinarität. Verwendungsmöglichkeiten. (3) Erläuterung ihres Inhalts und kurze Erörterung der Probleme bei der Konzeption und Erarbeitung.
    Source
    Information - Wissenschaft und Praxis. 61(2010) H.8, S.449-454
    Type
    a
  11. Raghavan, K.S.: ¬The Colon Classification : a few considerations on its future (2015) 0.01
    0.0063011474 = product of:
      0.015752869 = sum of:
        0.009437811 = weight(_text_:a in 2760) [ClassicSimilarity], result of:
          0.009437811 = score(doc=2760,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17652355 = fieldWeight in 2760, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2760)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 2760) [ClassicSimilarity], result of:
              0.012630116 = score(doc=2760,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 2760, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2760)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The article highlights the efforts and plans of Sarada Ranganathan Endowment for Library Science for revival of CC. Presents a brief history of the Scheme and explains is features. Discusses areas needing revamping for continual revision and existence of CC. Also seeks feedback from LIS professionals on the revision of the Scheme.
    Source
    Annals of library and information studies. 62(2015) no.4, S.231-238
    Type
    a
  12. Satija, M.P.: Save the national heritage : revise the Colon Classification (2015) 0.01
    0.0063011474 = product of:
      0.015752869 = sum of:
        0.009437811 = weight(_text_:a in 2791) [ClassicSimilarity], result of:
          0.009437811 = score(doc=2791,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17652355 = fieldWeight in 2791, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2791)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 2791) [ClassicSimilarity], result of:
              0.012630116 = score(doc=2791,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 2791, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2791)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    The paper presents a case for the revival of Colon Classification (CC). It traces the status of CC in brief and discusses its features. The author brings to light attempts made at providing a base for continuous improvements in the scheme and bringing it back to life. Measures for the revival of CC are suggested.
    Source
    Annals of library and information studies. 62(2015) no.4, S.239-248
    Type
    a
  13. Hudon, M.; Fortier, A.: Facet : itself a multifaceted concept (2018) 0.01
    0.0063011474 = product of:
      0.015752869 = sum of:
        0.009437811 = weight(_text_:a in 4741) [ClassicSimilarity], result of:
          0.009437811 = score(doc=4741,freq=6.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.17652355 = fieldWeight in 4741, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=4741)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 4741) [ClassicSimilarity], result of:
              0.012630116 = score(doc=4741,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 4741, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4741)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
    Type
    a
  14. Rajaram, S.: Principles for helpful sequence and their relevance in technical writings : a study (2015) 0.01
    0.005898641 = product of:
      0.014746603 = sum of:
        0.0100103095 = weight(_text_:a in 2795) [ClassicSimilarity], result of:
          0.0100103095 = score(doc=2795,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.18723148 = fieldWeight in 2795, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2795)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 2795) [ClassicSimilarity], result of:
              0.009472587 = score(doc=2795,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 2795, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2795)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    A modest attempt is made in this paper to show how Ranganathan's Principles for Helpful Sequence are relevant in technical writings as writers need to organise the knowledge in a helpful sequence. Instead of relying on intuition, a deliberate understanding of the Principles for Helpful Sequence as recognised by Ranganathan would be more useful in bringing out effective products. The paper first outlines the eight Principles for Helpful Sequence and then goes on to explore the relevance of each of these eight principles to a wide range of technical documents. The paper concludes that an understanding of these principles is part of the core competencies of technical writers even in the web environment.
    Source
    Annals of library and information studies. 62(2015) no.4, S.268-273
    Type
    a
  15. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.01
    0.005886516 = product of:
      0.01471629 = sum of:
        0.010769378 = weight(_text_:a in 4824) [ClassicSimilarity], result of:
          0.010769378 = score(doc=4824,freq=20.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.20142901 = fieldWeight in 4824, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4824)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 4824) [ClassicSimilarity], result of:
              0.007893822 = score(doc=4824,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 4824, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4824)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
    Type
    a
  16. Ghosh, S.; Panigrahi, P.: Use of Ranganathan's analytico-synthetic approach in developing a domain ontology in library and information science (2015) 0.01
    0.0057805413 = product of:
      0.014451353 = sum of:
        0.0076151006 = weight(_text_:a in 2798) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=2798,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 2798, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2798)
        0.006836252 = product of:
          0.013672504 = sum of:
            0.013672504 = weight(_text_:information in 2798) [ClassicSimilarity], result of:
              0.013672504 = score(doc=2798,freq=6.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.16796975 = fieldWeight in 2798, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2798)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Classification is the basis of knowledge organization. Ontology, a comparatively new concept used as a tool for knowledge organization, establishes connections between terms and concepts enhancing the scope and usefulness of library classification. Ranganathan had invented the strong theory of the analytico-synthetic method in classification and devised Colon Classification. In this study a domain ontology on library and information science has been developed by implementing Raganathan's faceted approach of classification. The hierarchical relationships among terms have been established primarily keeping conformity with that of Ranganathan's Colon Classification (7th edition). But to accommodate new vocabularies, DDC 23rd edition and UDC Standard edition are consulted. The Protégé ontology editor has been used. The study carefully examines the steps in which the analytico-synthetic method have been followed. Ranganathan's Canon of Characteristics and its relevant Canons have been followed for defining the class-subclass hierarchy. It concludes by identifying the drawbacks as well as the merits faced while developing the ontology. This paper proves the relevance and importance of Ranganathan's philosophy in developing ontology based knowledge organization.
    Source
    Annals of library and information studies. 62(2015) no.4, S.274-280
    Type
    a
  17. Panigrahi, P.: Ranganathan and Dewey in hierarchical subject classification : some similarities (2015) 0.01
    0.0056083994 = product of:
      0.014020998 = sum of:
        0.00770594 = weight(_text_:a in 2789) [ClassicSimilarity], result of:
          0.00770594 = score(doc=2789,freq=4.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14413087 = fieldWeight in 2789, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=2789)
        0.006315058 = product of:
          0.012630116 = sum of:
            0.012630116 = weight(_text_:information in 2789) [ClassicSimilarity], result of:
              0.012630116 = score(doc=2789,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.1551638 = fieldWeight in 2789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2789)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    S R Ranganathan and Melvil Dewey devised two types of classification schemes viz., faceted and enumerative. Ranganathan's faceted classification scheme is based on postulates, principles and canons. It has a strong theory. While working with the two schemes, similarities are observed. This paper tries to identify and present some relationships.
    Source
    Annals of library and information studies. 62(2015) no.4, S.265-267
    Type
    a
  18. Johnson, E.H.: S R Ranganathan in the Internet age (2019) 0.01
    0.005549766 = product of:
      0.013874415 = sum of:
        0.009138121 = weight(_text_:a in 5406) [ClassicSimilarity], result of:
          0.009138121 = score(doc=5406,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.1709182 = fieldWeight in 5406, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5406)
        0.0047362936 = product of:
          0.009472587 = sum of:
            0.009472587 = weight(_text_:information in 5406) [ClassicSimilarity], result of:
              0.009472587 = score(doc=5406,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.116372846 = fieldWeight in 5406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5406)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    S R Ranganathan's ideas have influenced library classification since the inception of his Colon Classification in 1933. His address at Elsinore, "Library Classification Through a Century", was his grand vision of the century of progress in classification from 1876 to 1975, and looked to the future of faceted classification as the means to provide a cohesive system to organize the world's information. Fifty years later, the internet and its achievements, social ecology, and consequences present a far more complicated picture, with the library as he knew it as a very small part and the problems that he confronted now greatly exacerbated. The systematic nature of Ranganathan's canons, principles, postulates, and devices suggest that modern semantic algorithms could guide automatic subject tagging. The vision presented here is one of internet-wide faceted classification and retrieval, implemented as open, distributed facets providing unified faceted searching across all web sites.
    Type
    a
  19. Aparecida Moura, M.: Emerging discursive formations, folksonomy and social semantic information spaces (SSIS) : the contributions of the theory of integrative levels in the studies carried out by the Classification Research Group (CRG) (2014) 0.01
    0.005278751 = product of:
      0.013196876 = sum of:
        0.0076151006 = weight(_text_:a in 1395) [ClassicSimilarity], result of:
          0.0076151006 = score(doc=1395,freq=10.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.14243183 = fieldWeight in 1395, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1395)
        0.0055817757 = product of:
          0.011163551 = sum of:
            0.011163551 = weight(_text_:information in 1395) [ClassicSimilarity], result of:
              0.011163551 = score(doc=1395,freq=4.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.13714671 = fieldWeight in 1395, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1395)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    This paper focuses on the discursive formations emerging from the Social Semantic Information Spaces (SSIS) in light of the concept of emergence in the theory of integrative levels. The study aims to identify the opportunities and challenges of incorporating epistemological considerations in the act of acquiring knowledge into the consolidation of knowledge organization and mediation processes and devices in the emergence of phenomena. The goal was to analyze the effects of that concept on the actions of a sample of researchers registered in an emerging research domain in SSIS in order to understand this type of indexing done by the users and communities as a classification of integrating levels. The methodology was established by triangulation through social network analysis, consensus analysis and archaeology of knowledge. It was possible to conclude that there is a collective effort to settle a semantic interoperability model for the labeling of contents based on best practices regarding the description of the objects shared in SSIS.
    Type
    a
  20. Tennis, J.T.: Never facets alone : the evolving thought and persistent problems in Ranganathan's theories of classification (2017) 0.00
    0.004915534 = product of:
      0.012288835 = sum of:
        0.008341924 = weight(_text_:a in 5800) [ClassicSimilarity], result of:
          0.008341924 = score(doc=5800,freq=12.0), product of:
            0.053464882 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046368346 = queryNorm
            0.15602624 = fieldWeight in 5800, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5800)
        0.003946911 = product of:
          0.007893822 = sum of:
            0.007893822 = weight(_text_:information in 5800) [ClassicSimilarity], result of:
              0.007893822 = score(doc=5800,freq=2.0), product of:
                0.08139861 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046368346 = queryNorm
                0.09697737 = fieldWeight in 5800, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5800)
          0.5 = coord(1/2)
      0.4 = coord(2/5)
    
    Abstract
    Shiyali Ramamrita Ranganathan's theory of classification spans a number of works over a number of decades. And while he was devoted to solving many problems in the practice of librarianship, and is known as the father of library science in India (Garfield, 1984), his work in classification revolves around one central concern. His classification research addressed the problems that arose from introducing new ideas into a scheme for classification, while maintaining a meaningful hierarchical and systematically arranged order of classes. This is because hierarchical and systematically arranged classes are the defining characteristic of useful classification. To lose this order is to through the addition of new classes is to introduce confusion, if not chaos, and to move toward a useless classification - or at least one that requires complete revision. In the following chapter, I outline the stages, and the elements of those stages, in Ranganathan's thought on classification from 1926-1972, as well as posthumous work that continues his agenda. And while facets figure prominently in all of these stages; but for Ranganathan to achieve his goal, he must continually add to this central feature of his theory of classification. I will close this chapter with an outline of persistent problems that represent research fronts for the field. Chief among these are what to do about scheme change and the open question about the rigor of information modeling in light of semantic web developments.
    Type
    a