Search (3 results, page 1 of 1)

  • × subject_ss:"Data mining"
  1. Semantic applications (2018) 0.01
    0.014686662 = product of:
      0.044059984 = sum of:
        0.044059984 = weight(_text_:based in 5204) [ClassicSimilarity], result of:
          0.044059984 = score(doc=5204,freq=6.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.28829288 = fieldWeight in 5204, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5204)
      0.33333334 = coord(1/3)
    
    Abstract
    This book describes proven methodologies for developing semantic applications: software applications which explicitly or implicitly uses the semantics (i.e., the meaning) of a domain terminology in order to improve usability, correctness, and completeness. An example is semantic search, where synonyms and related terms are used for enriching the results of a simple text-based search. Ontologies, thesauri or controlled vocabularies are the centerpiece of semantic applications. The book includes technological and architectural best practices for corporate use.
    Content
    Introduction.- Ontology Development.- Compliance using Metadata.- Variety Management for Big Data.- Text Mining in Economics.- Generation of Natural Language Texts.- Sentiment Analysis.- Building Concise Text Corpora from Web Contents.- Ontology-Based Modelling of Web Content.- Personalized Clinical Decision Support for Cancer Care.- Applications of Temporal Conceptual Semantic Systems.- Context-Aware Documentation in the Smart Factory.- Knowledge-Based Production Planning for Industry 4.0.- Information Exchange in Jurisdiction.- Supporting Automated License Clearing.- Managing cultural assets: Implementing typical cultural heritage archive's usage scenarios via Semantic Web technologies.- Semantic Applications for Process Management.- Domain-Specific Semantic Search Applications.
  2. Next generation search engines : advanced models for information retrieval (2012) 0.01
    0.005995804 = product of:
      0.017987411 = sum of:
        0.017987411 = weight(_text_:based in 357) [ClassicSimilarity], result of:
          0.017987411 = score(doc=357,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.11769507 = fieldWeight in 357, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
      0.33333334 = coord(1/3)
    
    Abstract
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
    Content
    Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.
  3. Information visualization in data mining and knowledge discovery (2002) 0.00
    0.0022907937 = product of:
      0.006872381 = sum of:
        0.006872381 = product of:
          0.013744762 = sum of:
            0.013744762 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.013744762 = score(doc=1789,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    23. 3.2008 19:10:22

Types