Search (162 results, page 1 of 9)

  • × theme_ss:"Retrievalalgorithmen"
  1. Li, H.; Wu, H.; Li, D.; Lin, S.; Su, Z.; Luo, X.: PSI: A probabilistic semantic interpretable framework for fine-grained image ranking (2018) 0.06
    0.059697293 = product of:
      0.089545935 = sum of:
        0.052871976 = weight(_text_:based in 4577) [ClassicSimilarity], result of:
          0.052871976 = score(doc=4577,freq=6.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.34595144 = fieldWeight in 4577, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=4577)
        0.036673963 = product of:
          0.073347926 = sum of:
            0.073347926 = weight(_text_:training in 4577) [ClassicSimilarity], result of:
              0.073347926 = score(doc=4577,freq=2.0), product of:
                0.23690371 = queryWeight, product of:
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.050723847 = queryNorm
                0.3096107 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Image Ranking is one of the key problems in information science research area. However, most current methods focus on increasing the performance, leaving the semantic gap problem, which refers to the learned ranking models are hard to be understood, remaining intact. Therefore, in this article, we aim at learning an interpretable ranking model to tackle the semantic gap in fine-grained image ranking. We propose to combine attribute-based representation and online passive-aggressive (PA) learning based ranking models to achieve this goal. Besides, considering the highly localized instances in fine-grained image ranking, we introduce a supervised constrained clustering method to gather class-balanced training instances for local PA-based models, and incorporate the learned local models into a unified probabilistic framework. Extensive experiments on the benchmark demonstrate that the proposed framework outperforms state-of-the-art methods in terms of accuracy and speed.
  2. Fan, W.; Fox, E.A.; Pathak, P.; Wu, H.: ¬The effects of fitness functions an genetic programming-based ranking discovery for Web search (2004) 0.06
    0.05924972 = product of:
      0.08887458 = sum of:
        0.068257436 = weight(_text_:based in 2239) [ClassicSimilarity], result of:
          0.068257436 = score(doc=2239,freq=10.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.44662142 = fieldWeight in 2239, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=2239)
        0.020617142 = product of:
          0.041234285 = sum of:
            0.041234285 = weight(_text_:22 in 2239) [ClassicSimilarity], result of:
              0.041234285 = score(doc=2239,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.23214069 = fieldWeight in 2239, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2239)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Genetic-based evolutionary learning algorithms, such as genetic algorithms (GAs) and genetic programming (GP), have been applied to information retrieval (IR) since the 1980s. Recently, GP has been applied to a new IR taskdiscovery of ranking functions for Web search-and has achieved very promising results. However, in our prior research, only one fitness function has been used for GP-based learning. It is unclear how other fitness functions may affect ranking function discovery for Web search, especially since it is weIl known that choosing a proper fitness function is very important for the effectiveness and efficiency of evolutionary algorithms. In this article, we report our experience in contrasting different fitness function designs an GP-based learning using a very large Web corpus. Our results indicate that the design of fitness functions is instrumental in performance improvement. We also give recommendations an the design of fitness functions for genetic-based information retrieval experiments.
    Date
    31. 5.2004 19:22:06
  3. Chang, C.-H.; Hsu, C.-C.: Integrating query expansion and conceptual relevance feedback for personalized Web information retrieval (1998) 0.06
    0.05715821 = product of:
      0.08573731 = sum of:
        0.061683975 = weight(_text_:based in 1319) [ClassicSimilarity], result of:
          0.061683975 = score(doc=1319,freq=6.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.40361002 = fieldWeight in 1319, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1319)
        0.024053333 = product of:
          0.048106667 = sum of:
            0.048106667 = weight(_text_:22 in 1319) [ClassicSimilarity], result of:
              0.048106667 = score(doc=1319,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.2708308 = fieldWeight in 1319, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1319)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Keyword based querying has been an immediate and efficient way to specify and retrieve related information that the user inquired. However, conventional document ranking based on an automatic assessment of document relevance to the query may not be the best approach when little information is given. Proposes an idea to integrate 2 existing techniques, query expansion and relevance feedback to achieve a concept-based information search for the Web
    Date
    1. 8.1996 22:08:06
  4. Bornmann, L.; Mutz, R.: From P100 to P100' : a new citation-rank approach (2014) 0.06
    0.056699496 = product of:
      0.08504924 = sum of:
        0.057559717 = weight(_text_:based in 1431) [ClassicSimilarity], result of:
          0.057559717 = score(doc=1431,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.37662423 = fieldWeight in 1431, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0625 = fieldNorm(doc=1431)
        0.027489524 = product of:
          0.05497905 = sum of:
            0.05497905 = weight(_text_:22 in 1431) [ClassicSimilarity], result of:
              0.05497905 = score(doc=1431,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.30952093 = fieldWeight in 1431, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1431)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Properties of a percentile-based rating scale needed in bibliometrics are formulated. Based on these properties, P100 was recently introduced as a new citation-rank approach (Bornmann, Leydesdorff, & Wang, 2013). In this paper, we conceptualize P100 and propose an improvement which we call P100'. Advantages and disadvantages of citation-rank indicators are noted.
    Date
    22. 8.2014 17:05:18
  5. Kwok, K.L.: ¬A network approach to probabilistic information retrieval (1995) 0.05
    0.053229168 = product of:
      0.07984375 = sum of:
        0.04316979 = weight(_text_:based in 5696) [ClassicSimilarity], result of:
          0.04316979 = score(doc=5696,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.28246817 = fieldWeight in 5696, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=5696)
        0.036673963 = product of:
          0.073347926 = sum of:
            0.073347926 = weight(_text_:training in 5696) [ClassicSimilarity], result of:
              0.073347926 = score(doc=5696,freq=2.0), product of:
                0.23690371 = queryWeight, product of:
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.050723847 = queryNorm
                0.3096107 = fieldWeight in 5696, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5696)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Shows how probabilistic information retrieval based on document components may be implemented as a feedforward (feedbackward) artificial neural network. The network supports adaptation of connection weights as well as the growing of new edges between queries and terms based on user relevance feedback data for training, and it reflects query modification and expansion in information retrieval. A learning rule is applied that can also be viewed as supporting sequential learning using a harmonic sequence learning rate. Experimental results with 4 standard small collections and a large Wall Street Journal collection show that small query expansion levels of about 30 terms can achieve most of the gains at the low-recall high-precision region, while larger expansion levels continue to provide gains at the high-recall low-precision region of a precision recall curve
  6. Faloutsos, C.: Signature files (1992) 0.05
    0.045460265 = product of:
      0.068190396 = sum of:
        0.040700868 = weight(_text_:based in 3499) [ClassicSimilarity], result of:
          0.040700868 = score(doc=3499,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.26631355 = fieldWeight in 3499, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0625 = fieldNorm(doc=3499)
        0.027489524 = product of:
          0.05497905 = sum of:
            0.05497905 = weight(_text_:22 in 3499) [ClassicSimilarity], result of:
              0.05497905 = score(doc=3499,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.30952093 = fieldWeight in 3499, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3499)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Presents a survey and discussion on signature-based text retrieval methods. It describes the main idea behind the signature approach and its advantages over other text retrieval methods, it provides a classification of the signature methods that have appeared in the literature, it describes the main representatives of each class, together with the relative advantages and drawbacks, and it gives a list of applications as well as commercial or university prototypes that use the signature approach
    Date
    7. 5.1999 15:22:48
  7. Soulier, L.; Jabeur, L.B.; Tamine, L.; Bahsoun, W.: On ranking relevant entities in heterogeneous networks using a language-based model (2013) 0.05
    0.04537136 = product of:
      0.06805704 = sum of:
        0.050876085 = weight(_text_:based in 664) [ClassicSimilarity], result of:
          0.050876085 = score(doc=664,freq=8.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.33289194 = fieldWeight in 664, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=664)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 664) [ClassicSimilarity], result of:
              0.034361906 = score(doc=664,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 664, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=664)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A new challenge, accessing multiple relevant entities, arises from the availability of linked heterogeneous data. In this article, we address more specifically the problem of accessing relevant entities, such as publications and authors within a bibliographic network, given an information need. We propose a novel algorithm, called BibRank, that estimates a joint relevance of documents and authors within a bibliographic network. This model ranks each type of entity using a score propagation algorithm with respect to the query topic and the structure of the underlying bi-type information entity network. Evidence sources, namely content-based and network-based scores, are both used to estimate the topical similarity between connected entities. For this purpose, authorship relationships are analyzed through a language model-based score on the one hand and on the other hand, non topically related entities of the same type are detected through marginal citations. The article reports the results of experiments using the Bibrank algorithm for an information retrieval task. The CiteSeerX bibliographic data set forms the basis for the topical query automatic generation and evaluation. We show that a statistically significant improvement over closely related ranking models is achieved.
    Date
    22. 3.2013 19:34:49
  8. Dannenberg, R.B.; Birmingham, W.P.; Pardo, B.; Hu, N.; Meek, C.; Tzanetakis, G.: ¬A comparative evaluation of search techniques for query-by-humming using the MUSART testbed (2007) 0.04
    0.04435764 = product of:
      0.06653646 = sum of:
        0.035974823 = weight(_text_:based in 269) [ClassicSimilarity], result of:
          0.035974823 = score(doc=269,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.23539014 = fieldWeight in 269, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=269)
        0.030561633 = product of:
          0.061123267 = sum of:
            0.061123267 = weight(_text_:training in 269) [ClassicSimilarity], result of:
              0.061123267 = score(doc=269,freq=2.0), product of:
                0.23690371 = queryWeight, product of:
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.050723847 = queryNorm
                0.2580089 = fieldWeight in 269, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=269)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Query-by-humming systems offer content-based searching for melodies and require no special musical training or knowledge. Many such systems have been built, but there has not been much useful evaluation and comparison in the literature due to the lack of shared databases and queries. The MUSART project testbed allows various search algorithms to be compared using a shared framework that automatically runs experiments and summarizes results. Using this testbed, the authors compared algorithms based on string alignment, melodic contour matching, a hidden Markov model, n-grams, and CubyHum. Retrieval performance is very sensitive to distance functions and the representation of pitch and rhythm, which raises questions about some previously published conclusions. Some algorithms are particularly sensitive to the quality of queries. Our queries, which are taken from human subjects in a realistic setting, are quite difficult, especially for n-gram models. Finally, simulations on query-by-humming performance as a function of database size indicate that retrieval performance falls only slowly as the database size increases.
  9. Burgin, R.: ¬The retrieval effectiveness of 5 clustering algorithms as a function of indexing exhaustivity (1995) 0.04
    0.040827293 = product of:
      0.061240938 = sum of:
        0.044059984 = weight(_text_:based in 3365) [ClassicSimilarity], result of:
          0.044059984 = score(doc=3365,freq=6.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.28829288 = fieldWeight in 3365, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3365)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 3365) [ClassicSimilarity], result of:
              0.034361906 = score(doc=3365,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 3365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3365)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The retrieval effectiveness of 5 hierarchical clustering methods (single link, complete link, group average, Ward's method, and weighted average) is examined as a function of indexing exhaustivity with 4 test collections (CR, Cranfield, Medlars, and Time). Evaluations of retrieval effectiveness, based on 3 measures of optimal retrieval performance, confirm earlier findings that the performance of a retrieval system based on single link clustering varies as a function of indexing exhaustivity but fail ti find similar patterns for other clustering methods. The data also confirm earlier findings regarding the poor performance of single link clustering is a retrieval environment. The poor performance of single link clustering appears to derive from that method's tendency to produce a small number of large, ill defined document clusters. By contrast, the data examined here found the retrieval performance of the other clustering methods to be general comparable. The data presented also provides an opportunity to examine the theoretical limits of cluster based retrieval and to compare these theoretical limits to the effectiveness of operational implementations. Performance standards of the 4 document collections examined were found to vary widely, and the effectiveness of operational implementations were found to be in the range defined as unacceptable. Further improvements in search strategies and document representations warrant investigations
    Date
    22. 2.1996 11:20:06
  10. Song, D.; Bruza, P.D.: Towards context sensitive information inference (2003) 0.04
    0.035437185 = product of:
      0.053155776 = sum of:
        0.035974823 = weight(_text_:based in 1428) [ClassicSimilarity], result of:
          0.035974823 = score(doc=1428,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.23539014 = fieldWeight in 1428, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1428)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
              0.034361906 = score(doc=1428,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 1428, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1428)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Humans can make hasty, but generally robust judgements about what a text fragment is, or is not, about. Such judgements are termed information inference. This article furnishes an account of information inference from a psychologistic stance. By drawing an theories from nonclassical logic and applied cognition, an information inference mechanism is proposed that makes inferences via computations of information flow through an approximation of a conceptual space. Within a conceptual space information is represented geometrically. In this article, geometric representations of words are realized as vectors in a high dimensional semantic space, which is automatically constructed from a text corpus. Two approaches were presented for priming vector representations according to context. The first approach uses a concept combination heuristic to adjust the vector representation of a concept in the light of the representation of another concept. The second approach computes a prototypical concept an the basis of exemplar trace texts and moves it in the dimensional space according to the context. Information inference is evaluated by measuring the effectiveness of query models derived by information flow computations. Results show that information flow contributes significantly to query model effectiveness, particularly with respect to precision. Moreover, retrieval effectiveness compares favorably with two probabilistic query models, and another based an semantic association. More generally, this article can be seen as a contribution towards realizing operational systems that mimic text-based human reasoning.
    Date
    22. 3.2003 19:35:46
  11. Furner, J.: ¬A unifying model of document relatedness for hybrid search engines (2003) 0.03
    0.034095198 = product of:
      0.051142793 = sum of:
        0.03052565 = weight(_text_:based in 2717) [ClassicSimilarity], result of:
          0.03052565 = score(doc=2717,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.19973516 = fieldWeight in 2717, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=2717)
        0.020617142 = product of:
          0.041234285 = sum of:
            0.041234285 = weight(_text_:22 in 2717) [ClassicSimilarity], result of:
              0.041234285 = score(doc=2717,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.23214069 = fieldWeight in 2717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2717)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Previous work an search-engine design has indicated that information-seekers may benefit from being given the opportunity to exploit multiple sources of evidence of document relatedness. Few existing systems, however, give users more than minimal control over the selections that may be made among methods of exploitation. By applying the methods of "document network analysis" (DNA), a unifying, graph-theoretic model of content-, collaboration-, and context-based systems (CCC) may be developed in which the nature of the similarities between types of document relatedness and document ranking are clarified. The usefulness of the approach to system design suggested by this model may be tested by constructing and evaluating a prototype system (UCXtra) that allows searchers to maintain control over the multiple ways in which document collections may be ranked and re-ranked.
    Date
    11. 9.2004 17:32:22
  12. Witschel, H.F.: Global term weights in distributed environments (2008) 0.03
    0.034095198 = product of:
      0.051142793 = sum of:
        0.03052565 = weight(_text_:based in 2096) [ClassicSimilarity], result of:
          0.03052565 = score(doc=2096,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.19973516 = fieldWeight in 2096, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=2096)
        0.020617142 = product of:
          0.041234285 = sum of:
            0.041234285 = weight(_text_:22 in 2096) [ClassicSimilarity], result of:
              0.041234285 = score(doc=2096,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.23214069 = fieldWeight in 2096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2096)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper examines the estimation of global term weights (such as IDF) in information retrieval scenarios where a global view on the collection is not available. In particular, the two options of either sampling documents or of using a reference corpus independent of the target retrieval collection are compared using standard IR test collections. In addition, the possibility of pruning term lists based on frequency is evaluated. The results show that very good retrieval performance can be reached when just the most frequent terms of a collection - an "extended stop word list" - are known and all terms which are not in that list are treated equally. However, the list cannot always be fully estimated from a general-purpose reference corpus, but some "domain-specific stop words" need to be added. A good solution for achieving this is to mix estimates from small samples of the target retrieval collection with ones derived from a reference corpus.
    Date
    1. 8.2008 9:44:22
  13. Campos, L.M. de; Fernández-Luna, J.M.; Huete, J.F.: Implementing relevance feedback in the Bayesian network retrieval model (2003) 0.03
    0.034095198 = product of:
      0.051142793 = sum of:
        0.03052565 = weight(_text_:based in 825) [ClassicSimilarity], result of:
          0.03052565 = score(doc=825,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.19973516 = fieldWeight in 825, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.046875 = fieldNorm(doc=825)
        0.020617142 = product of:
          0.041234285 = sum of:
            0.041234285 = weight(_text_:22 in 825) [ClassicSimilarity], result of:
              0.041234285 = score(doc=825,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.23214069 = fieldWeight in 825, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=825)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Relevance Feedback consists in automatically formulating a new query according to the relevance judgments provided by the user after evaluating a set of retrieved documents. In this article, we introduce several relevance feedback methods for the Bayesian Network Retrieval ModeL The theoretical frame an which our methods are based uses the concept of partial evidences, which summarize the new pieces of information gathered after evaluating the results obtained by the original query. These partial evidences are inserted into the underlying Bayesian network and a new inference process (probabilities propagation) is run to compute the posterior relevance probabilities of the documents in the collection given the new query. The quality of the proposed methods is tested using a preliminary experimentation with different standard document collections.
    Date
    22. 3.2003 19:30:19
  14. Ravana, S.D.; Rajagopal, P.; Balakrishnan, V.: Ranking retrieval systems using pseudo relevance judgments (2015) 0.03
    0.03315705 = product of:
      0.049735576 = sum of:
        0.025438042 = weight(_text_:based in 2591) [ClassicSimilarity], result of:
          0.025438042 = score(doc=2591,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.16644597 = fieldWeight in 2591, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2591)
        0.024297535 = product of:
          0.04859507 = sum of:
            0.04859507 = weight(_text_:22 in 2591) [ClassicSimilarity], result of:
              0.04859507 = score(doc=2591,freq=4.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.27358043 = fieldWeight in 2591, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2591)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose In a system-based approach, replicating the web would require large test collections, and judging the relevancy of all documents per topic in creating relevance judgment through human assessors is infeasible. Due to the large amount of documents that requires judgment, there are possible errors introduced by human assessors because of disagreements. The paper aims to discuss these issues. Design/methodology/approach This study explores exponential variation and document ranking methods that generate a reliable set of relevance judgments (pseudo relevance judgments) to reduce human efforts. These methods overcome problems with large amounts of documents for judgment while avoiding human disagreement errors during the judgment process. This study utilizes two key factors: number of occurrences of each document per topic from all the system runs; and document rankings to generate the alternate methods. Findings The effectiveness of the proposed method is evaluated using the correlation coefficient of ranked systems using mean average precision scores between the original Text REtrieval Conference (TREC) relevance judgments and pseudo relevance judgments. The results suggest that the proposed document ranking method with a pool depth of 100 could be a reliable alternative to reduce human effort and disagreement errors involved in generating TREC-like relevance judgments. Originality/value Simple methods proposed in this study show improvement in the correlation coefficient in generating alternate relevance judgment without human assessors while contributing to information retrieval evaluation.
    Date
    20. 1.2015 18:30:22
    18. 9.2018 18:22:56
  15. Hoenkamp, E.; Bruza, P.D.; Song, D.; Huang, Q.: ¬An effective approach to verbose queries using a limited dependencies language model (2009) 0.03
    0.029866494 = product of:
      0.04479974 = sum of:
        0.020350434 = weight(_text_:based in 2122) [ClassicSimilarity], result of:
          0.020350434 = score(doc=2122,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.13315678 = fieldWeight in 2122, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.03125 = fieldNorm(doc=2122)
        0.024449307 = product of:
          0.048898615 = sum of:
            0.048898615 = weight(_text_:training in 2122) [ClassicSimilarity], result of:
              0.048898615 = score(doc=2122,freq=2.0), product of:
                0.23690371 = queryWeight, product of:
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.050723847 = queryNorm
                0.20640713 = fieldWeight in 2122, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.67046 = idf(docFreq=1125, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2122)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Intuitively, any 'bag of words' approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distributions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document's initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur's search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.
  16. Baloh, P.; Desouza, K.C.; Hackney, R.: Contextualizing organizational interventions of knowledge management systems : a design science perspectiveA domain analysis (2012) 0.03
    0.028412666 = product of:
      0.042618997 = sum of:
        0.025438042 = weight(_text_:based in 241) [ClassicSimilarity], result of:
          0.025438042 = score(doc=241,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.16644597 = fieldWeight in 241, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0390625 = fieldNorm(doc=241)
        0.017180953 = product of:
          0.034361906 = sum of:
            0.034361906 = weight(_text_:22 in 241) [ClassicSimilarity], result of:
              0.034361906 = score(doc=241,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.19345059 = fieldWeight in 241, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=241)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    We address how individuals' (workers) knowledge needs influence the design of knowledge management systems (KMS), enabling knowledge creation and utilization. It is evident that KMS technologies and activities are indiscriminately deployed in most organizations with little regard to the actual context of their adoption. Moreover, it is apparent that the extant literature pertaining to knowledge management projects is frequently deficient in identifying the variety of factors indicative for successful KMS. This presents an obvious business practice and research gap that requires a critical analysis of the necessary intervention that will actually improve how workers can leverage and form organization-wide knowledge. This research involved an extensive review of the literature, a grounded theory methodological approach and rigorous data collection and synthesis through an empirical case analysis (Parsons Brinckerhoff and Samsung). The contribution of this study is the formulation of a model for designing KMS based upon the design science paradigm, which aspires to create artifacts that are interdependent of people and organizations. The essential proposition is that KMS design and implementation must be contextualized in relation to knowledge needs and that these will differ for various organizational settings. The findings present valuable insights and further understanding of the way in which KMS design efforts should be focused.
    Date
    11. 6.2012 14:22:34
  17. Na, S.-H.; Kang, I.-S.; Roh, J.-E.; Lee, J.-H.: ¬An empirical study of query expansion and cluster-based retrieval in language modeling approach (2007) 0.03
    0.026544556 = product of:
      0.07963367 = sum of:
        0.07963367 = weight(_text_:based in 906) [ClassicSimilarity], result of:
          0.07963367 = score(doc=906,freq=10.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.5210583 = fieldWeight in 906, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.0546875 = fieldNorm(doc=906)
      0.33333334 = coord(1/3)
    
    Abstract
    The term mismatch problem in information retrieval is a critical problem, and several techniques have been developed, such as query expansion, cluster-based retrieval and dimensionality reduction to resolve this issue. Of these techniques, this paper performs an empirical study on query expansion and cluster-based retrieval. We examine the effect of using parsimony in query expansion and the effect of clustering algorithms in cluster-based retrieval. In addition, query expansion and cluster-based retrieval are compared, and their combinations are evaluated in terms of retrieval performance by performing experimentations on seven test collections of NTCIR and TREC.
  18. Khoo, C.S.G.; Wan, K.-W.: ¬A simple relevancy-ranking strategy for an interface to Boolean OPACs (2004) 0.02
    0.02480603 = product of:
      0.037209045 = sum of:
        0.025182378 = weight(_text_:based in 2509) [ClassicSimilarity], result of:
          0.025182378 = score(doc=2509,freq=4.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.1647731 = fieldWeight in 2509, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2509)
        0.012026667 = product of:
          0.024053333 = sum of:
            0.024053333 = weight(_text_:22 in 2509) [ClassicSimilarity], result of:
              0.024053333 = score(doc=2509,freq=2.0), product of:
                0.17762627 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050723847 = queryNorm
                0.1354154 = fieldWeight in 2509, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2509)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A relevancy-ranking algorithm for a natural language interface to Boolean online public access catalogs (OPACs) was formulated and compared with that currently used in a knowledge-based search interface called the E-Referencer, being developed by the authors. The algorithm makes use of seven weIl-known ranking criteria: breadth of match, section weighting, proximity of query words, variant word forms (stemming), document frequency, term frequency and document length. The algorithm converts a natural language query into a series of increasingly broader Boolean search statements. In a small experiment with ten subjects in which the algorithm was simulated by hand, the algorithm obtained good results with a mean overall precision of 0.42 and mean average precision of 0.62, representing a 27 percent improvement in precision and 41 percent improvement in average precision compared to the E-Referencer. The usefulness of each step in the algorithm was analyzed and suggestions are made for improving the algorithm.
    Content
    "Most Web search engines accept natural language queries, perform some kind of fuzzy matching and produce ranked output, displaying first the documents that are most likely to be relevant. On the other hand, most library online public access catalogs (OPACs) an the Web are still Boolean retrieval systems that perform exact matching, and require users to express their search requests precisely in a Boolean search language and to refine their search statements to improve the search results. It is well-documented that users have difficulty searching Boolean OPACs effectively (e.g. Borgman, 1996; Ensor, 1992; Wallace, 1993). One approach to making OPACs easier to use is to develop a natural language search interface that acts as a middleware between the user's Web browser and the OPAC system. The search interface can accept a natural language query from the user and reformulate it as a series of Boolean search statements that are then submitted to the OPAC. The records retrieved by the OPAC are ranked by the search interface before forwarding them to the user's Web browser. The user, then, does not need to interact directly with the Boolean OPAC but with the natural language search interface or search intermediary. The search interface interacts with the OPAC system an the user's behalf. The advantage of this approach is that no modification to the OPAC or library system is required. Furthermore, the search interface can access multiple OPACs, acting as a meta search engine, and integrate search results from various OPACs before sending them to the user. The search interface needs to incorporate a method for converting the user's natural language query into a series of Boolean search statements, and for ranking the OPAC records retrieved. The purpose of this study was to develop a relevancyranking algorithm for a search interface to Boolean OPAC systems. This is part of an on-going effort to develop a knowledge-based search interface to OPACs called the E-Referencer (Khoo et al., 1998, 1999; Poo et al., 2000). E-Referencer v. 2 that has been implemented applies a repertoire of initial search strategies and reformulation strategies to retrieve records from OPACs using the Z39.50 protocol, and also assists users in mapping query keywords to the Library of Congress subject headings."
    Source
    Electronic library. 22(2004) no.2, S.112-120
  19. Daniowicz, C.; Baliski, J.: Document ranking based upon Markov chains (2001) 0.02
    0.023742175 = product of:
      0.07122652 = sum of:
        0.07122652 = weight(_text_:based in 5388) [ClassicSimilarity], result of:
          0.07122652 = score(doc=5388,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.46604872 = fieldWeight in 5388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.109375 = fieldNorm(doc=5388)
      0.33333334 = coord(1/3)
    
  20. Ciocca, G.; Schettini, R.: ¬A relevance feedback mechanism for content-based image retrieval (1999) 0.02
    0.023742175 = product of:
      0.07122652 = sum of:
        0.07122652 = weight(_text_:based in 6498) [ClassicSimilarity], result of:
          0.07122652 = score(doc=6498,freq=2.0), product of:
            0.15283063 = queryWeight, product of:
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.050723847 = queryNorm
            0.46604872 = fieldWeight in 6498, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0129938 = idf(docFreq=5906, maxDocs=44218)
              0.109375 = fieldNorm(doc=6498)
      0.33333334 = coord(1/3)
    

Languages

  • e 155
  • d 4
  • chi 1
  • m 1
  • More… Less…

Types

  • a 153
  • m 4
  • el 3
  • r 2
  • s 2
  • More… Less…