Search (17 results, page 1 of 1)

  • × author_ss:"Leydesdorff, L."
  1. Leydesdorff, L.; Bornmann, L.: Mapping (USPTO) patent data using overlays to Google Maps (2012) 0.04
    0.03704738 = product of:
      0.055571064 = sum of:
        0.038683258 = weight(_text_:management in 288) [ClassicSimilarity], result of:
          0.038683258 = score(doc=288,freq=2.0), product of:
            0.17312427 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.051362853 = queryNorm
            0.22344214 = fieldWeight in 288, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.046875 = fieldNorm(doc=288)
        0.016887804 = product of:
          0.03377561 = sum of:
            0.03377561 = weight(_text_:system in 288) [ClassicSimilarity], result of:
              0.03377561 = score(doc=288,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.20878783 = fieldWeight in 288, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=288)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A technique is developed using patent information available online (at the U.S. Patent and Trademark Office) for the generation of Google Maps. The overlays indicate both the quantity and the quality of patents at the city level. This information is relevant for research questions in technology analysis, innovation studies, and evolutionary economics, as well as economic geography. The resulting maps can also be relevant for technological innovation policies and research and development management, because the U.S. market can be considered the leading market for patenting and patent competition. In addition to the maps, the routines provide quantitative data about the patents for statistical analysis. The cities on the map are colored according to the results of significance tests. The overlays are explored for the Netherlands as a "national system of innovations" and further elaborated in two cases of emerging technologies: ribonucleic acid interference (RNAi) and nanotechnology.
  2. Leydesdorff, L.; Sun, Y.: National and international dimensions of the Triple Helix in Japan : university-industry-government versus international coauthorship relations (2009) 0.03
    0.029839888 = product of:
      0.089519665 = sum of:
        0.089519665 = sum of:
          0.04776592 = weight(_text_:system in 2761) [ClassicSimilarity], result of:
            0.04776592 = score(doc=2761,freq=4.0), product of:
              0.16177002 = queryWeight, product of:
                3.1495528 = idf(docFreq=5152, maxDocs=44218)
                0.051362853 = queryNorm
              0.29527056 = fieldWeight in 2761, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.1495528 = idf(docFreq=5152, maxDocs=44218)
                0.046875 = fieldNorm(doc=2761)
          0.041753743 = weight(_text_:22 in 2761) [ClassicSimilarity], result of:
            0.041753743 = score(doc=2761,freq=2.0), product of:
              0.17986396 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051362853 = queryNorm
              0.23214069 = fieldWeight in 2761, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2761)
      0.33333334 = coord(1/3)
    
    Abstract
    International co-authorship relations and university-industry-government (Triple Helix) relations have hitherto been studied separately. Using Japanese publication data for the 1981-2004 period, we were able to study both kinds of relations in a single design. In the Japanese file, 1,277,030 articles with at least one Japanese address were attributed to the three sectors, and we know additionally whether these papers were coauthored internationally. Using the mutual information in three and four dimensions, respectively, we show that the Japanese Triple-Helix system has been continuously eroded at the national level. However, since the mid-1990s, international coauthorship relations have contributed to a reduction of the uncertainty at the national level. In other words, the national publication system of Japan has developed a capacity to retain surplus value generated internationally. In a final section, we compare these results with an analysis based on similar data for Canada. A relative uncoupling of national university-industry-government relations because of international collaborations is indicated in both countries.
    Date
    22. 3.2009 19:07:20
  3. Rafols, I.; Porter, A.L.; Leydesdorff, L.: Science overlay maps : a new tool for research policy and library management (2010) 0.01
    0.01289442 = product of:
      0.038683258 = sum of:
        0.038683258 = weight(_text_:management in 3987) [ClassicSimilarity], result of:
          0.038683258 = score(doc=3987,freq=2.0), product of:
            0.17312427 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.051362853 = queryNorm
            0.22344214 = fieldWeight in 3987, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.046875 = fieldNorm(doc=3987)
      0.33333334 = coord(1/3)
    
  4. Leydesdorff, L.; Strand, Oe.: ¬The Swedish system of innovation : regional synergies in a knowledge-based economy (2013) 0.01
    0.009750179 = product of:
      0.029250536 = sum of:
        0.029250536 = product of:
          0.058501072 = sum of:
            0.058501072 = weight(_text_:system in 1047) [ClassicSimilarity], result of:
              0.058501072 = score(doc=1047,freq=6.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.36163113 = fieldWeight in 1047, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1047)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Based on the complete set of firm data for Sweden (N = 1,187,421; November 2011), we analyze the mutual information among the geographical, technological, and organizational distributions in terms of synergies at regional and national levels. Using this measure, the interaction among three dimensions can become negative and thus indicate a net export of uncertainty by a system or, in other words, synergy in how knowledge functions are distributed over the carriers. Aggregation at the regional level (NUTS3) of the data organized at the municipal level (NUTS5) shows that 48.5% of the regional synergy is provided by the 3 metropolitan regions of Stockholm, Gothenburg, and Malmö/Lund. Sweden can be considered a centralized and hierarchically organized system. Our results accord with other statistics, but this triple helix indicator measures synergy more specifically and quantitatively. The analysis also provides us with validation for using this measure in previous studies of more regionalized systems of innovation (such as Hungary and Norway).
  5. Zhou, P.; Su, X.; Leydesdorff, L.: ¬A comparative study on communication structures of Chinese journals in the social sciences (2010) 0.01
    0.007960987 = product of:
      0.02388296 = sum of:
        0.02388296 = product of:
          0.04776592 = sum of:
            0.04776592 = weight(_text_:system in 3580) [ClassicSimilarity], result of:
              0.04776592 = score(doc=3580,freq=4.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.29527056 = fieldWeight in 3580, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3580)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We argue that the communication structures in the Chinese social sciences have not yet been sufficiently reformed. Citation patterns among Chinese domestic journals in three subject areas - political science and Marxism, library and information science, and economics - are compared with their counterparts internationally. Like their colleagues in the natural and life sciences, Chinese scholars in the social sciences provide fewer references to journal publications than their international counterparts; like their international colleagues, social scientists provide fewer references than natural sciences. The resulting citation networks, therefore, are sparse. Nevertheless, the citation structures clearly suggest that the Chinese social sciences are far less specialized in terms of disciplinary delineations than their international counterparts. Marxism studies are more established than political science in China. In terms of the impact of the Chinese political system on academic fields, disciplines closely related to the political system are less specialized than those weakly related. In the discussion section, we explore reasons that may cause the current stagnation and provide policy recommendations.
  6. Leydesdorff, L.: ¬The communication of meaning and the structuration of expectations : Giddens' "structuration theory" and Luhmann's "self-organization" (2010) 0.01
    0.007960987 = product of:
      0.02388296 = sum of:
        0.02388296 = product of:
          0.04776592 = sum of:
            0.04776592 = weight(_text_:system in 4004) [ClassicSimilarity], result of:
              0.04776592 = score(doc=4004,freq=4.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.29527056 = fieldWeight in 4004, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4004)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The communication of meaning as distinct from (Shannon-type) information is central to Luhmann's social systems theory and Giddens' structuration theory of action. These theories share an emphasis on reflexivity, but focus on meaning along a divide between interhuman communication and intentful action as two different systems of reference. Recombining these two theories into a theory about the structuration of expectations, interactions, organization, and self-organization of intentional communications can be simulated based on algorithms from the computation of anticipatory systems. The self-organizing and organizing layers remain rooted in the double contingency of the human encounter, which provides the variation. Organization and self-organization of communication are reflexive upon and therefore reconstructive of each other. Using mutual information in three dimensions, the imprint of meaning processing in the modeling system on the historical organization of uncertainty in the modeled system can be measured. This is shown empirically in the case of intellectual organization as "structurating" structure in the textual domain of scientific articles.
  7. Leydesdorff, L.: ¬The construction and globalization of the knowledge base in inter-human communication systems (2003) 0.01
    0.0069589573 = product of:
      0.020876871 = sum of:
        0.020876871 = product of:
          0.041753743 = sum of:
            0.041753743 = weight(_text_:22 in 1621) [ClassicSimilarity], result of:
              0.041753743 = score(doc=1621,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.23214069 = fieldWeight in 1621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1621)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 5.2003 19:48:04
  8. Leydesdorff, L.: Can networks of journal-journal citations be used as indicators of change in the social sciences? (2003) 0.01
    0.0069589573 = product of:
      0.020876871 = sum of:
        0.020876871 = product of:
          0.041753743 = sum of:
            0.041753743 = weight(_text_:22 in 4460) [ClassicSimilarity], result of:
              0.041753743 = score(doc=4460,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.23214069 = fieldWeight in 4460, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4460)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    6.11.2005 19:02:22
  9. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.01
    0.0069589573 = product of:
      0.020876871 = sum of:
        0.020876871 = product of:
          0.041753743 = sum of:
            0.041753743 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.041753743 = score(doc=4681,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    8. 1.2019 18:22:45
  10. Leydesdorff, L.; Heimeriks, G.: ¬The self-organization of the European information society : the case of "biotechnology" (2001) 0.01
    0.0066341567 = product of:
      0.01990247 = sum of:
        0.01990247 = product of:
          0.03980494 = sum of:
            0.03980494 = weight(_text_:system in 6524) [ClassicSimilarity], result of:
              0.03980494 = score(doc=6524,freq=4.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.24605882 = fieldWeight in 6524, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6524)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Fields of technoscience like biotechnology develop in a network mode: disciplinary insights from different backgrounds are recombined as competing innovation systems are continuously reshaped. The ongoing process of integration at the European level generates an additional network of transnational collaborations. Using the title words of scientific publications in five core journals of biotechnology, multivariate analysis is used to distinguish between the intellectual organization of the publications in terms of title words and the institutional network in terms of addresses of documents. The interaction among the representation of intellectual space in terms of words and co-words, and the potentially European network system is compared with the document sets with American and Japanese addresses. The European system can also be decomposed in terms of the contributions of member states. Whereas a European vocabulary can be made visible at the global level, this communality disappears by this decomposition. The network effect at the European level can be considered as institutional more than cognitive
  11. Leydesdorff, L.; Bornmann, L.: How fractional counting of citations affects the impact factor : normalization in terms of differences in citation potentials among fields of science (2011) 0.01
    0.0057991315 = product of:
      0.017397394 = sum of:
        0.017397394 = product of:
          0.03479479 = sum of:
            0.03479479 = weight(_text_:22 in 4186) [ClassicSimilarity], result of:
              0.03479479 = score(doc=4186,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.19345059 = fieldWeight in 4186, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4186)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2011 12:51:07
  12. Hellsten, I.; Leydesdorff, L.: ¬The construction of interdisciplinarity : the development of the knowledge base and programmatic focus of the journal Climatic Change, 1977-2013 (2016) 0.01
    0.0057991315 = product of:
      0.017397394 = sum of:
        0.017397394 = product of:
          0.03479479 = sum of:
            0.03479479 = weight(_text_:22 in 3089) [ClassicSimilarity], result of:
              0.03479479 = score(doc=3089,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.19345059 = fieldWeight in 3089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3089)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    24. 8.2016 17:53:22
  13. Leydesdorff, L.; Johnson, M.W.; Ivanova, I.: Toward a calculus of redundancy : signification, codification, and anticipation in cultural evolution (2018) 0.01
    0.0057991315 = product of:
      0.017397394 = sum of:
        0.017397394 = product of:
          0.03479479 = sum of:
            0.03479479 = weight(_text_:22 in 4463) [ClassicSimilarity], result of:
              0.03479479 = score(doc=4463,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.19345059 = fieldWeight in 4463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4463)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    29. 9.2018 11:22:09
  14. Leydesdorff, L.: ¬The university-industry knowledge relationship : analyzing patents and the science base of technologies (2004) 0.01
    0.0056292685 = product of:
      0.016887804 = sum of:
        0.016887804 = product of:
          0.03377561 = sum of:
            0.03377561 = weight(_text_:system in 2887) [ClassicSimilarity], result of:
              0.03377561 = score(doc=2887,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.20878783 = fieldWeight in 2887, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2887)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Via the Internet, information scientists can obtain costfree access to large databases in the "hidden" or "deep Web." These databases are often structured far more than the Internet domains themselves. The patent database of the U.S. Patent and Trade Office is used in this study to examine the science base of patents in terms of the literature references in these patents. Universitybased patents at the global level are compared with results when using the national economy of the Netherlands as a system of reference. Methods for accessing the online databases and for the visualization of the results are specified. The conclusion is that "biotechnology" has historically generated a model for theorizing about university-industry relations that cannot easily be generalized to other sectors and disciplines.
  15. Leydesdorff, L.; Bornmann, L.; Mingers, J.: Statistical significance and effect sizes of differences among research universities at the level of nations and worldwide based on the Leiden rankings (2019) 0.00
    0.004691057 = product of:
      0.01407317 = sum of:
        0.01407317 = product of:
          0.02814634 = sum of:
            0.02814634 = weight(_text_:system in 5225) [ClassicSimilarity], result of:
              0.02814634 = score(doc=5225,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.17398985 = fieldWeight in 5225, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5225)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Leiden Rankings can be used for grouping research universities by considering universities which are not statistically significantly different as homogeneous sets. The groups and intergroup relations can be analyzed and visualized using tools from network analysis. Using the so-called "excellence indicator" PPtop-10%-the proportion of the top-10% most-highly-cited papers assigned to a university-we pursue a classification using (a) overlapping stability intervals, (b) statistical-significance tests, and (c) effect sizes of differences among 902 universities in 54 countries; we focus on the UK, Germany, Brazil, and the USA as national examples. Although the groupings remain largely the same using different statistical significance levels or overlapping stability intervals, these classifications are uncorrelated with those based on effect sizes. Effect sizes for the differences between universities are small (w < .2). The more detailed analysis of universities at the country level suggests that distinctions beyond three or perhaps four groups of universities (high, middle, low) may not be meaningful. Given similar institutional incentives, isomorphism within each eco-system of universities should not be underestimated. Our results suggest that networks based on overlapping stability intervals can provide a first impression of the relevant groupings among universities. However, the clusters are not well-defined divisions between groups of universities.
  16. Leydesdorff, L.; Wagner, C.S.; Porto-Gomez, I.; Comins, J.A.; Phillips, F.: Synergy in the knowledge base of U.S. innovation systems at national, state, and regional levels : the contributions of high-tech manufacturing and knowledge-intensive services (2019) 0.00
    0.004691057 = product of:
      0.01407317 = sum of:
        0.01407317 = product of:
          0.02814634 = sum of:
            0.02814634 = weight(_text_:system in 5390) [ClassicSimilarity], result of:
              0.02814634 = score(doc=5390,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.17398985 = fieldWeight in 5390, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5390)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Using information theory, we measure innovation systemness as synergy among size-classes, ZIP Codes, and technological classes (NACE-codes) for 8.5 million American companies. The synergy at the national level is decomposed at the level of states, Core-Based Statistical Areas (CBSA), and Combined Statistical Areas (CSA). We zoom in to the state of California and in more detail to Silicon Valley. Our results do not support the assumption of a national system of innovations in the U.S.A. Innovation systems appear to operate at the level of the states; the CBSA are too small, so that systemness spills across their borders. Decomposition of the sample in terms of high-tech manufacturing (HTM), medium-high-tech manufacturing (MHTM), knowledge-intensive services (KIS), and high-tech services (HTKIS) does not change this pattern, but refines it. The East Coast-New Jersey, Boston, and New York-and California are the major players, with Texas a third one in the case of HTKIS. Chicago and industrial centers in the Midwest also contribute synergy. Within California, Los Angeles contributes synergy in the sectors of manufacturing, the San Francisco area in KIS. KIS in Silicon Valley and the Bay Area-a CSA composed of seven CBSA-spill over to other regions and even globally.
  17. Leydesdorff, L.; Ivanova, I.: ¬The measurement of "interdisciplinarity" and "synergy" in scientific and extra-scientific collaborations (2021) 0.00
    0.004691057 = product of:
      0.01407317 = sum of:
        0.01407317 = product of:
          0.02814634 = sum of:
            0.02814634 = weight(_text_:system in 208) [ClassicSimilarity], result of:
              0.02814634 = score(doc=208,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.17398985 = fieldWeight in 208, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=208)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Problem solving often requires crossing boundaries, such as those between disciplines. When policy-makers call for "interdisciplinarity," however, they often mean "synergy." Synergy is generated when the whole offers more possibilities than the sum of its parts. An increase in the number of options above the sum of the options in subsets can be measured as redundancy; that is, the number of not-yet-realized options. The number of options available to an innovation system for realization can be as decisive for the system's survival as the historically already-realized innovations. Unlike "interdisciplinarity," "synergy" can also be generated in sectorial or geographical collaborations. The measurement of "synergy," however, requires a methodology different from the measurement of "interdisciplinarity." In this study, we discuss recent advances in the operationalization and measurement of "interdisciplinarity," and propose a methodology for measuring "synergy" based on information theory. The sharing of meanings attributed to information from different perspectives can increase redundancy. Increasing redundancy reduces the relative uncertainty, for example, in niches. The operationalization of the two concepts-"interdisciplinarity" and "synergy"-as different and partly overlapping indicators allows for distinguishing between the effects and the effectiveness of science-policy interventions in research priorities.