Search (32 results, page 1 of 2)

  • × theme_ss:"Universale Facettenklassifikationen"
  1. Perugini, S.: Supporting multiple paths to objects in information hierarchies : faceted classification, faceted search, and symbolic links (2010) 0.05
    0.046324544 = product of:
      0.06948681 = sum of:
        0.045130465 = weight(_text_:management in 4227) [ClassicSimilarity], result of:
          0.045130465 = score(doc=4227,freq=2.0), product of:
            0.17312427 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.051362853 = queryNorm
            0.2606825 = fieldWeight in 4227, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4227)
        0.02435635 = product of:
          0.0487127 = sum of:
            0.0487127 = weight(_text_:22 in 4227) [ClassicSimilarity], result of:
              0.0487127 = score(doc=4227,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.2708308 = fieldWeight in 4227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4227)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Information processing and management. 46(2010) no.1, S.22-43
  2. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.03
    0.027848562 = product of:
      0.083545685 = sum of:
        0.083545685 = sum of:
          0.048750892 = weight(_text_:system in 1418) [ClassicSimilarity], result of:
            0.048750892 = score(doc=1418,freq=6.0), product of:
              0.16177002 = queryWeight, product of:
                3.1495528 = idf(docFreq=5152, maxDocs=44218)
                0.051362853 = queryNorm
              0.30135927 = fieldWeight in 1418, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.1495528 = idf(docFreq=5152, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1418)
          0.03479479 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
            0.03479479 = score(doc=1418,freq=2.0), product of:
              0.17986396 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051362853 = queryNorm
              0.19345059 = fieldWeight in 1418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1418)
      0.33333334 = coord(1/3)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.02
    0.020980377 = product of:
      0.06294113 = sum of:
        0.06294113 = sum of:
          0.02814634 = weight(_text_:system in 3739) [ClassicSimilarity], result of:
            0.02814634 = score(doc=3739,freq=2.0), product of:
              0.16177002 = queryWeight, product of:
                3.1495528 = idf(docFreq=5152, maxDocs=44218)
                0.051362853 = queryNorm
              0.17398985 = fieldWeight in 3739, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.1495528 = idf(docFreq=5152, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
          0.03479479 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
            0.03479479 = score(doc=3739,freq=2.0), product of:
              0.17986396 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051362853 = queryNorm
              0.19345059 = fieldWeight in 3739, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3739)
      0.33333334 = coord(1/3)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  4. Faceted classification today : International UDC Seminar 2017, 14.-15. Spetember, London, UK. (2017) 0.02
    0.01719256 = product of:
      0.051577676 = sum of:
        0.051577676 = weight(_text_:management in 3773) [ClassicSimilarity], result of:
          0.051577676 = score(doc=3773,freq=2.0), product of:
            0.17312427 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.051362853 = queryNorm
            0.29792285 = fieldWeight in 3773, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0625 = fieldNorm(doc=3773)
      0.33333334 = coord(1/3)
    
    Abstract
    Faceted analytical theory is a widely accepted approach for constructing modern classification schemes and other controlled vocabularies. While the advantages of faceted approach are broadly accepted and understood the actual implementation is coupled with many challenges when it comes to data modelling, management and retrieval. UDC Seminar 2017 revisits faceted analytical theory as one of the most influential methodologies in the development of knowledge organization systems.
  5. Broughton, V.: Language related problems in the construction of faceted terminologies and their automatic management (2008) 0.02
    0.015196219 = product of:
      0.045588657 = sum of:
        0.045588657 = weight(_text_:management in 2497) [ClassicSimilarity], result of:
          0.045588657 = score(doc=2497,freq=4.0), product of:
            0.17312427 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.051362853 = queryNorm
            0.2633291 = fieldWeight in 2497, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2497)
      0.33333334 = coord(1/3)
    
    Content
    The paper describes current work on the generation of a thesaurus format from the schedules of the Bliss Bibliographic Classification 2nd edition (BC2). The practical problems that occur in moving from a concept based approach to a terminological approach cluster around issues of vocabulary control that are not fully addressed in a systematic structure. These difficulties can be exacerbated within domains in the humanities because large numbers of culture specific terms may need to be accommodated in any thesaurus. The ways in which these problems can be resolved within the context of a semi-automated approach to the thesaurus generation have consequences for the management of classification data in the source vocabulary. The way in which the vocabulary is marked up for the purpose of machine manipulation is described, and some of the implications for editorial policy are discussed and examples given. The value of the classification notation as a language independent representation and mapping tool should not be sacrificed in such an exercise.
  6. ¬The BSO manual : the development, rationale and use of the Broad System of Ordering (1979) 0.01
    0.013134959 = product of:
      0.039404877 = sum of:
        0.039404877 = product of:
          0.07880975 = sum of:
            0.07880975 = weight(_text_:system in 1051) [ClassicSimilarity], result of:
              0.07880975 = score(doc=1051,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.4871716 = fieldWeight in 1051, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1051)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  7. BSO: Broad system of ordering : schedule and index (1978) 0.01
    0.013134959 = product of:
      0.039404877 = sum of:
        0.039404877 = product of:
          0.07880975 = sum of:
            0.07880975 = weight(_text_:system in 3330) [ClassicSimilarity], result of:
              0.07880975 = score(doc=3330,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.4871716 = fieldWeight in 3330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3330)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  8. Dahlberg, I.: Principles for the construction of a universal classification system : a proposal (1978) 0.01
    0.013134959 = product of:
      0.039404877 = sum of:
        0.039404877 = product of:
          0.07880975 = sum of:
            0.07880975 = weight(_text_:system in 67) [ClassicSimilarity], result of:
              0.07880975 = score(doc=67,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.4871716 = fieldWeight in 67, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.109375 = fieldNorm(doc=67)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  9. Broughton, V.: Finding Bliss on the Web : some problems of representing faceted terminologies in digital environments 0.01
    0.01289442 = product of:
      0.038683258 = sum of:
        0.038683258 = weight(_text_:management in 3532) [ClassicSimilarity], result of:
          0.038683258 = score(doc=3532,freq=2.0), product of:
            0.17312427 = queryWeight, product of:
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.051362853 = queryNorm
            0.22344214 = fieldWeight in 3532, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.3706124 = idf(docFreq=4130, maxDocs=44218)
              0.046875 = fieldNorm(doc=3532)
      0.33333334 = coord(1/3)
    
    Abstract
    The Bliss Bibliographic Classification is the only example of a fully faceted general classification scheme in the Western world. Although it is the object of much interest as a model for other tools it suffers from the lack of a web presence, and remedying this is an immediate objective for its editors. Understanding how this might be done presents some challenges, as the scheme is semantically very rich and complex in the range and nature of the relationships it contains. The automatic management of these is already in place using local software, but exporting this to a common data format needs careful thought and planning. Various encoding schemes, both for traditional classifications, and for digital materials, represent variously: the concepts; their functional roles; and the relationships between them. Integrating these aspects in a coherent and interchangeable manner appears to be achievable, but the most appropriate format is as yet unclear.
  10. Dahlberg, I.: Grundlagen universaler Wissensordnung : Probleme und Möglichkeiten eines universalen Klassifikationssystems des Wissens (1974) 0.01
    0.011598263 = product of:
      0.03479479 = sum of:
        0.03479479 = product of:
          0.06958958 = sum of:
            0.06958958 = weight(_text_:22 in 127) [ClassicSimilarity], result of:
              0.06958958 = score(doc=127,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.38690117 = fieldWeight in 127, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=127)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Footnote
    Zugleich Dissertation Univ. Düsseldorf. - Rez. in: ZfBB. 22(1975) S.53-57 (H.-A. Koch)
  11. Dahlberg, I.: Why a new universal classification system is needed (2017) 0.01
    0.011375209 = product of:
      0.034125626 = sum of:
        0.034125626 = product of:
          0.06825125 = sum of:
            0.06825125 = weight(_text_:system in 3614) [ClassicSimilarity], result of:
              0.06825125 = score(doc=3614,freq=6.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.42190298 = fieldWeight in 3614, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3614)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Research history of the last 70 years highlights various systems for contents assessment and retrieval of scientific literature, such as universal classifications, thesauri, ontologies etc., which have followed developments of their own, notwithstanding a general trend towards interoperability, i.e. either to become instruments for cooperation or to widen their scope to encompass neighbouring fields within their framework. In the case of thesauri and ontologies, the endeavour to upgrade them into a universal system was bound to miscarry. This paper purports to indicate ways to gain from past experience and possibly rally material achievements while updating and promoting the ontologically-based faceted Information Coding Classification as a progressive universal system fit for meeting whatever requirements in the fields of information and science at large.
  12. Rodriguez, R.D.: Kaiser's systematic indexing (1984) 0.01
    0.01061465 = product of:
      0.03184395 = sum of:
        0.03184395 = product of:
          0.0636879 = sum of:
            0.0636879 = weight(_text_:system in 4521) [ClassicSimilarity], result of:
              0.0636879 = score(doc=4521,freq=4.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.3936941 = fieldWeight in 4521, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4521)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    J. Kaiser (1868-1927) developed a system of subject indexing based on what he called "concretes" and "processes" to govern the form of subject headings and subdivisions. Although Kaiser applied his systematic indexing to specialized technical and business collections, his ideas are entirely applicable to all book collections and catalogs. Though largely ignored, Kaiser's system is of permanent interest in the study of the development of subject analysis
  13. Asundi, A.Y.: Domain specific categories and relations and their potential applications : a case study of two arrays of agriculture schedule of Colon Classification (2012) 0.01
    0.009750179 = product of:
      0.029250536 = sum of:
        0.029250536 = product of:
          0.058501072 = sum of:
            0.058501072 = weight(_text_:system in 843) [ClassicSimilarity], result of:
              0.058501072 = score(doc=843,freq=6.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.36163113 = fieldWeight in 843, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.046875 = fieldNorm(doc=843)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The categories/isolates are broadly conceived as common and special. The common categories are applicable to all the classes of subjects in a Classification system, whereas the specials are applicable within a domain or specified classes of a classification system. The CC has represented some unique special categories, especially in the Agriculture Subject schedule, and such a provision is not seen in any other classification system; not even in any other subject schedule of Colon Classification. These special categories are termed here as "Domain Specific Categories". The paper analyses the thematic relationships within and outside the subject schedule with potential applications in devising a scheme of metadata as demonstrated in a research study on Indian Medicinal Plants. The other potential applications of such thematic relationships are in the creation of semantic maps and in linking concepts from different domains of knowledge.
  14. Lin, W.-Y.C.: ¬The concept and applications of faceted classifications (2006) 0.01
    0.00927861 = product of:
      0.02783583 = sum of:
        0.02783583 = product of:
          0.05567166 = sum of:
            0.05567166 = weight(_text_:22 in 5083) [ClassicSimilarity], result of:
              0.05567166 = score(doc=5083,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.30952093 = fieldWeight in 5083, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5083)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    27. 5.2007 22:19:35
  15. Tennis, J.T.: Facets and fugit tempus : considering time's effect on faceted classification schemes (2012) 0.01
    0.00927861 = product of:
      0.02783583 = sum of:
        0.02783583 = product of:
          0.05567166 = sum of:
            0.05567166 = weight(_text_:22 in 826) [ClassicSimilarity], result of:
              0.05567166 = score(doc=826,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.30952093 = fieldWeight in 826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=826)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    2. 6.2013 18:33:22
  16. Heuvel, C. van den: Multidimensional classifications : past and future conceptualizations and visualizations (2012) 0.01
    0.008118784 = product of:
      0.02435635 = sum of:
        0.02435635 = product of:
          0.0487127 = sum of:
            0.0487127 = weight(_text_:22 in 632) [ClassicSimilarity], result of:
              0.0487127 = score(doc=632,freq=2.0), product of:
                0.17986396 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051362853 = queryNorm
                0.2708308 = fieldWeight in 632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=632)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 2.2013 11:31:25
  17. Dahlberg, I.: Towards a future for knowledge organization (2006) 0.01
    0.0075056907 = product of:
      0.022517072 = sum of:
        0.022517072 = product of:
          0.045034144 = sum of:
            0.045034144 = weight(_text_:system in 1476) [ClassicSimilarity], result of:
              0.045034144 = score(doc=1476,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.27838376 = fieldWeight in 1476, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1476)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Discusses the origin and evolution of the Information Coding Classification (ICC); its theoretical basis, and structure and advantageous attributes for organizing knowledge. Pleads that the considerable work already done on the system should be taken up and developed by interested research groups through collaborative effort. Concludes with some thoughts on the future of knowledge organization for information retrieval and other applications
  18. Dahlberg, I.: ¬The future of classification in libraries and networks : a theoretical point of view (1995) 0.01
    0.0066341567 = product of:
      0.01990247 = sum of:
        0.01990247 = product of:
          0.03980494 = sum of:
            0.03980494 = weight(_text_:system in 5563) [ClassicSimilarity], result of:
              0.03980494 = score(doc=5563,freq=4.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.24605882 = fieldWeight in 5563, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5563)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Some time ago, some people said classification is dead, we don't need it any more. They probably thought that subject headings could do the job of the necessary subject analysis and shelving of books. However, all of a sudden in 1984 the attitude changed, when an OCLC study of Karen Markey started to show what could be done even with an "outdated system" such as the Dewey Decimal Classification in the computer, once it was visible on a screen to show the helpfulness of a classified library catalogue called an OPAC; classification was brought back into the minds of doubtful librarians and of all those who thought they would not need it any longer. But the problem once phrased: "We are stuck with the two old systems, LCC and DDC" would not find a solution and is still with us today. We know that our systems are outdated but we seem still to be unable to replace them with better ones. What then should one do and advise, knowing that we need something better? Perhaps a new universal ordering system which more adequately represents and mediates the world of our present day knowledge? If we were to develop it from scratch, how would we create it and implement it in such a way that it would be acceptable to the majority of the present intellectual world population?
  19. Dahlberg, I.: ¬A faceted classification of general concepts (2011) 0.01
    0.0066341567 = product of:
      0.01990247 = sum of:
        0.01990247 = product of:
          0.03980494 = sum of:
            0.03980494 = weight(_text_:system in 4824) [ClassicSimilarity], result of:
              0.03980494 = score(doc=4824,freq=4.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.24605882 = fieldWeight in 4824, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4824)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    General concepts are all those form-categorial concepts which - attached to a specific concept of a classification system or thesaurus - can help to widen, sometimes even in a syntactical sense, the understanding of a case. In some existing universal classification systems such concepts have been named "auxiliaries" or "common isolates" as in the Colon Classification (CC). However, by such auxiliaries, different kinds of such concepts are listed, e.g. concepts of space and time, concepts of races and languages and concepts of kinds of documents, next to them also concepts of kinds of general activities, properties, persons, and institutions. Such latter kinds form part of the nine aspects ruling the facets in the Information Coding Classification (ICC) through the principle of using a Systematiser for the subdivision of subject groups and fields. Based on this principle and using and extending existing systems of such concepts, e.g. which A. Diemer had presented to the German Thesaurus Committee as well as those found in the UDC, in CC and attached to the Subject Heading System of the German National Library, a faceted classification is proposed for critical assessment, necessary improvement and possible later use in classification systems and thesauri.
  20. Doria, O.D.: ¬The role of activities awareness in faceted classification development (2012) 0.01
    0.0065674796 = product of:
      0.019702438 = sum of:
        0.019702438 = product of:
          0.039404877 = sum of:
            0.039404877 = weight(_text_:system in 364) [ClassicSimilarity], result of:
              0.039404877 = score(doc=364,freq=2.0), product of:
                0.16177002 = queryWeight, product of:
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.051362853 = queryNorm
                0.2435858 = fieldWeight in 364, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.1495528 = idf(docFreq=5152, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=364)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, we propose a part of the methodological work to accompanying the development of a new type of Knowledge Organization System (KOS) based on faceted classification. Our approach to faceted classification differs from its traditional use. We develop a theoretical typology of professional documents based on their uses. Then we correlate these types of documents to specific types of KOS according to their degree of structural constraint and activities they aim to serve.