Search (783 results, page 1 of 40)

  • × language_ss:"e"
  • × year_i:[2000 TO 2010}
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.27
    0.27286285 = sum of:
      0.08046506 = product of:
        0.24139518 = sum of:
          0.24139518 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
            0.24139518 = score(doc=562,freq=2.0), product of:
              0.429515 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.05066224 = queryNorm
              0.56201804 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.33333334 = coord(1/3)
      0.19239777 = sum of:
        0.15121357 = weight(_text_:mining in 562) [ClassicSimilarity], result of:
          0.15121357 = score(doc=562,freq=4.0), product of:
            0.28585905 = queryWeight, product of:
              5.642448 = idf(docFreq=425, maxDocs=44218)
              0.05066224 = queryNorm
            0.5289795 = fieldWeight in 562, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.642448 = idf(docFreq=425, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.0411842 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
          0.0411842 = score(doc=562,freq=2.0), product of:
            0.17741053 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.05066224 = queryNorm
            0.23214069 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
    Source
    Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004), 1-4 November 2004, Brighton, UK
  2. Information visualization in data mining and knowledge discovery (2002) 0.10
    0.10283139 = product of:
      0.20566279 = sum of:
        0.20566279 = sum of:
          0.19193472 = weight(_text_:mining in 1789) [ClassicSimilarity], result of:
            0.19193472 = score(doc=1789,freq=58.0), product of:
              0.28585905 = queryWeight, product of:
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.05066224 = queryNorm
              0.6714313 = fieldWeight in 1789, product of:
                7.615773 = tf(freq=58.0), with freq of:
                  58.0 = termFreq=58.0
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
          0.013728068 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
            0.013728068 = score(doc=1789,freq=2.0), product of:
              0.17741053 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05066224 = queryNorm
              0.07738023 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
      0.5 = coord(1/2)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
    LCSH
    Data mining
    RSWK
    Visualisierung / Computergraphik / Data Mining
    Data Mining / Visualisierung / Aufsatzsammlung (BVB)
    Subject
    Visualisierung / Computergraphik / Data Mining
    Data Mining / Visualisierung / Aufsatzsammlung (BVB)
    Data mining
    Theme
    Data Mining
  3. Sun, A.; Lim, E.-P.: Web unit-based mining of homepage relationships (2006) 0.09
    0.09432595 = product of:
      0.1886519 = sum of:
        0.1886519 = sum of:
          0.15433173 = weight(_text_:mining in 5274) [ClassicSimilarity], result of:
            0.15433173 = score(doc=5274,freq=6.0), product of:
              0.28585905 = queryWeight, product of:
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.05066224 = queryNorm
              0.5398875 = fieldWeight in 5274, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5274)
          0.034320172 = weight(_text_:22 in 5274) [ClassicSimilarity], result of:
            0.034320172 = score(doc=5274,freq=2.0), product of:
              0.17741053 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05066224 = queryNorm
              0.19345059 = fieldWeight in 5274, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5274)
      0.5 = coord(1/2)
    
    Abstract
    Homepages usually describe important semantic information about conceptual or physical entities; hence, they are the main targets for searching and browsing. To facilitate semantic-based information retrieval (IR) at a Web site, homepages can be identified and classified under some predefined concepts and these concepts are then used in query or browsing criteria, e.g., finding professor homepages containing information retrieval. In some Web sites, relationships may also exist among homepages. These relationship instances (also known as homepage relationships) enrich our knowledge about these Web sites and allow more expressive semantic-based IR. In this article, we investigate the features to be used in mining homepage relationships. We systematically develop different classes of inter-homepage features, namely, navigation, relative-location, and common-item features. We also propose deriving for each homepage a set of support pages to obtain richer and more complete content about the entity described by the homepage. The homepage together with its support pages are known to be a Web unit. By extracting inter-homepage features from Web units, our experiments on the WebKB dataset show that better homepage relationship mining accuracies can be achieved.
    Date
    22. 7.2006 16:18:25
  4. Fong, A.C.M.: Mining a Web citation database for document clustering (2002) 0.09
    0.088207915 = product of:
      0.17641583 = sum of:
        0.17641583 = product of:
          0.35283166 = sum of:
            0.35283166 = weight(_text_:mining in 3940) [ClassicSimilarity], result of:
              0.35283166 = score(doc=3940,freq=4.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                1.2342855 = fieldWeight in 3940, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3940)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Data Mining
  5. Kulathuramaiyer, N.; Maurer, H.: Implications of emerging data mining (2009) 0.08
    0.084530964 = product of:
      0.16906193 = sum of:
        0.16906193 = product of:
          0.33812386 = sum of:
            0.33812386 = weight(_text_:mining in 3144) [ClassicSimilarity], result of:
              0.33812386 = score(doc=3144,freq=20.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                1.1828341 = fieldWeight in 3144, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3144)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Data Mining describes a technology that discovers non-trivial hidden patterns in a large collection of data. Although this technology has a tremendous impact on our lives, the invaluable contributions of this invisible technology often go unnoticed. This paper discusses advances in data mining while focusing on the emerging data mining capability. Such data mining applications perform multidimensional mining on a wide variety of heterogeneous data sources, providing solutions to many unresolved problems. This paper also highlights the advantages and disadvantages arising from the ever-expanding scope of data mining. Data Mining augments human intelligence by equipping us with a wealth of knowledge and by empowering us to perform our daily tasks better. As the mining scope and capacity increases, users and organizations become more willing to compromise privacy. The huge data stores of the 'master miners' allow them to gain deep insights into individual lifestyles and their social and behavioural patterns. Data integration and analysis capability of combining business and financial trends together with the ability to deterministically track market changes will drastically affect our lives.
    Theme
    Data Mining
  6. Zhou, L.; Chaovalit, P.: Ontology-supported polarity mining (2008) 0.08
    0.082510956 = product of:
      0.16502191 = sum of:
        0.16502191 = product of:
          0.33004382 = sum of:
            0.33004382 = weight(_text_:mining in 1343) [ClassicSimilarity], result of:
              0.33004382 = score(doc=1343,freq=14.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                1.1545684 = fieldWeight in 1343, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1343)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Polarity mining provides an in-depth analysis of semantic orientations of text information. Motivated by its success in the area of topic mining, we propose an ontology-supported polarity mining (OSPM) approach. The approach aims to enhance polarity mining with ontology by providing detailed topic-specific information. OSPM was evaluated in the movie review domain using both supervised and unsupervised techniques. Results revealed that OSPM outperformed the baseline method without ontology support. The findings of this study not only advance the state of polarity mining research but also shed light on future research directions.
    Theme
    Data Mining
  7. Ku, L.-W.; Ho, H.-W.; Chen, H.-H.: Opinion mining and relationship discovery using CopeOpi opinion analysis system (2009) 0.08
    0.080165744 = product of:
      0.16033149 = sum of:
        0.16033149 = sum of:
          0.12601131 = weight(_text_:mining in 2938) [ClassicSimilarity], result of:
            0.12601131 = score(doc=2938,freq=4.0), product of:
              0.28585905 = queryWeight, product of:
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.05066224 = queryNorm
              0.44081625 = fieldWeight in 2938, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2938)
          0.034320172 = weight(_text_:22 in 2938) [ClassicSimilarity], result of:
            0.034320172 = score(doc=2938,freq=2.0), product of:
              0.17741053 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05066224 = queryNorm
              0.19345059 = fieldWeight in 2938, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2938)
      0.5 = coord(1/2)
    
    Abstract
    We present CopeOpi, an opinion-analysis system, which extracts from the Web opinions about specific targets, summarizes the polarity and strength of these opinions, and tracks opinion variations over time. Objects that yield similar opinion tendencies over a certain time period may be correlated due to the latent causal events. CopeOpi discovers relationships among objects based on their opinion-tracking plots and collocations. Event bursts are detected from the tracking plots, and the strength of opinion relationships is determined by the coverage of these plots. To evaluate opinion mining, we use the NTCIR corpus annotated with opinion information at sentence and document levels. CopeOpi achieves sentence- and document-level f-measures of 62% and 74%. For relationship discovery, we collected 1.3M economics-related documents from 93 Web sources over 22 months, and analyzed collocation-based, opinion-based, and hybrid models. We consider as correlated company pairs that demonstrate similar stock-price variations, and selected these as the gold standard for evaluation. Results show that opinion-based and collocation-based models complement each other, and that integrated models perform the best. The top 25, 50, and 100 pairs discovered achieve precision rates of 1, 0.92, and 0.79, respectively.
  8. Intelligent information processing and web mining : Proceedings of the International IIS: IIPWM'03 Conference held in Zakopane, Poland, June 2-5, 2003 (2003) 0.08
    0.075606786 = product of:
      0.15121357 = sum of:
        0.15121357 = product of:
          0.30242714 = sum of:
            0.30242714 = weight(_text_:mining in 4642) [ClassicSimilarity], result of:
              0.30242714 = score(doc=4642,freq=4.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                1.057959 = fieldWeight in 4642, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4642)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Data Mining
  9. Chen, S.Y.; Liu, X.: ¬The contribution of data mining to information science : making sense of it all (2005) 0.08
    0.075606786 = product of:
      0.15121357 = sum of:
        0.15121357 = product of:
          0.30242714 = sum of:
            0.30242714 = weight(_text_:mining in 4655) [ClassicSimilarity], result of:
              0.30242714 = score(doc=4655,freq=4.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                1.057959 = fieldWeight in 4655, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4655)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Data Mining
  10. Toldo, L.; Rippmann, F.: Integrated bioinformatics application for automated target discovery. (2005) 0.07
    0.074054174 = product of:
      0.14810835 = sum of:
        0.14810835 = sum of:
          0.10692415 = weight(_text_:mining in 5260) [ClassicSimilarity], result of:
            0.10692415 = score(doc=5260,freq=2.0), product of:
              0.28585905 = queryWeight, product of:
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.05066224 = queryNorm
              0.37404498 = fieldWeight in 5260, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.046875 = fieldNorm(doc=5260)
          0.0411842 = weight(_text_:22 in 5260) [ClassicSimilarity], result of:
            0.0411842 = score(doc=5260,freq=2.0), product of:
              0.17741053 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05066224 = queryNorm
              0.23214069 = fieldWeight in 5260, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5260)
      0.5 = coord(1/2)
    
    Abstract
    In this article we present an in silico method that automatically assigns putative functions to DNA sequences. The annotations are at an increasingly conceptual level, up to identifying general biomedical fields to which the sequences could contribute. This bioinformatics data-mining system makes substantial use of several resources: a locally stored MEDLINE® database; a manually built classification system; the MeSH® taxonomy; relational technology; and bioinformatics methods. Knowledge is generated from various data sources by using well-defined semantics, and by exploiting direct links between them. A two-dimensional Concept Map(TM) displays the knowledge graph, which allows causal connections to be followed. The use of this method has been valuable and has saved considerable time in our in-house projects, and can be generally exploited for any sequence-annotation or knowledge-condensation task.
    Date
    22. 7.2006 14:31:06
  11. Malaise, V.; Zweigenbaum, P.; Bachimont, B.: Mining defining contexts to help structuring differential ontologies (2005) 0.07
    0.07128276 = product of:
      0.14256552 = sum of:
        0.14256552 = product of:
          0.28513104 = sum of:
            0.28513104 = weight(_text_:mining in 6598) [ClassicSimilarity], result of:
              0.28513104 = score(doc=6598,freq=2.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.9974533 = fieldWeight in 6598, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.125 = fieldNorm(doc=6598)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  12. Relational data mining (2001) 0.07
    0.07072368 = product of:
      0.14144737 = sum of:
        0.14144737 = product of:
          0.28289473 = sum of:
            0.28289473 = weight(_text_:mining in 1303) [ClassicSimilarity], result of:
              0.28289473 = score(doc=1303,freq=14.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.9896301 = fieldWeight in 1303, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1303)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As the first book devoted to relational data mining, this coherently written multi-author monograph provides a thorough introduction and systematic overview of the area. The ferst part introduces the reader to the basics and principles of classical knowledge discovery in databases and inductive logic programmeng; subsequent chapters by leading experts assess the techniques in relational data mining in a principled and comprehensive way; finally, three chapters deal with advanced applications in various fields and refer the reader to resources for relational data mining. This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
    Theme
    Data Mining
  13. Benoit, G.: Data mining (2002) 0.07
    0.07072368 = product of:
      0.14144737 = sum of:
        0.14144737 = product of:
          0.28289473 = sum of:
            0.28289473 = weight(_text_:mining in 4296) [ClassicSimilarity], result of:
              0.28289473 = score(doc=4296,freq=14.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.9896301 = fieldWeight in 4296, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4296)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Data mining (DM) is a multistaged process of extracting previously unanticipated knowledge from large databases, and applying the results to decision making. Data mining tools detect patterns from the data and infer associations and rules from them. The extracted information may then be applied to prediction or classification models by identifying relations within the data records or between databases. Those patterns and rules can then guide decision making and forecast the effects of those decisions. However, this definition may be applied equally to "knowledge discovery in databases" (KDD). Indeed, in the recent literature of DM and KDD, a source of confusion has emerged, making it difficult to determine the exact parameters of both. KDD is sometimes viewed as the broader discipline, of which data mining is merely a component-specifically pattern extraction, evaluation, and cleansing methods (Raghavan, Deogun, & Sever, 1998, p. 397). Thurasingham (1999, p. 2) remarked that "knowledge discovery," "pattern discovery," "data dredging," "information extraction," and "knowledge mining" are all employed as synonyms for DM. Trybula, in his ARIST chapter an text mining, observed that the "existing work [in KDD] is confusing because the terminology is inconsistent and poorly defined.
    Theme
    Data Mining
  14. Perugini, S.; Ramakrishnan, N.: Mining Web functional dependencies for flexible information access (2007) 0.07
    0.07072368 = product of:
      0.14144737 = sum of:
        0.14144737 = product of:
          0.28289473 = sum of:
            0.28289473 = weight(_text_:mining in 602) [ClassicSimilarity], result of:
              0.28289473 = score(doc=602,freq=14.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.9896301 = fieldWeight in 602, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.046875 = fieldNorm(doc=602)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present an approach to enhancing information access through Web structure mining in contrast to traditional approaches involving usage mining. Specifically, we mine the hardwired hierarchical hyperlink structure of Web sites to identify patterns of term-term co-occurrences we call Web functional dependencies (FDs). Intuitively, a Web FD x -> y declares that all paths through a site involving a hyperlink labeled x also contain a hyperlink labeled y. The complete set of FDs satisfied by a site help characterize (flexible and expressive) interaction paradigms supported by a site, where a paradigm is the set of explorable sequences therein. We describe algorithms for mining FDs and results from mining several hierarchical Web sites and present several interface designs that can exploit such FDs to provide compelling user experiences.
    Footnote
    Beitrag eines Themenschwerpunktes "Mining Web resources for enhancing information retrieval"
    Theme
    Data Mining
  15. Srinivasan, P.: Text mining in biomedicine : challenges and opportunities (2006) 0.07
    0.07072368 = product of:
      0.14144737 = sum of:
        0.14144737 = product of:
          0.28289473 = sum of:
            0.28289473 = weight(_text_:mining in 1497) [ClassicSimilarity], result of:
              0.28289473 = score(doc=1497,freq=14.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.9896301 = fieldWeight in 1497, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1497)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Text mining is about making serendipity more likely. Serendipity, the chance discovery of interesting ideas, has been responsible for many discoveries in science. Text mining systems strive to explore large text collections, separate the potentially meaningfull connections from a vast and mostly noisy background of random associations. In this paper we provide a summary of our text mining approach and also illustrate briefly some of the experiments we have conducted with this approach. In particular we use a profile-based text mining method. We have used these profiles to explore the global distribution of disease research, replicate discoveries made by others and propose new hypotheses. Text mining holds much potential that has yet to be tapped.
    Theme
    Data Mining
  16. Haravu, L.J.; Neelameghan, A.: Text mining and data mining in knowledge organization and discovery : the making of knowledge-based products (2003) 0.07
    0.06682759 = product of:
      0.13365518 = sum of:
        0.13365518 = product of:
          0.26731035 = sum of:
            0.26731035 = weight(_text_:mining in 5653) [ClassicSimilarity], result of:
              0.26731035 = score(doc=5653,freq=18.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.9351125 = fieldWeight in 5653, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5653)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Discusses the importance of knowledge organization in the context of the information overload caused by the vast quantities of data and information accessible on internal and external networks of an organization. Defines the characteristics of a knowledge-based product. Elaborates on the techniques and applications of text mining in developing knowledge products. Presents two approaches, as case studies, to the making of knowledge products: (1) steps and processes in the planning, designing and development of a composite multilingual multimedia CD product, with the potential international, inter-cultural end users in view, and (2) application of natural language processing software in text mining. Using a text mining software, it is possible to link concept terms from a processed text to a related thesaurus, glossary, schedules of a classification scheme, and facet structured subject representations. Concludes that the products of text mining and data mining could be made more useful if the features of a faceted scheme for subject classification are incorporated into text mining techniques and products.
    Theme
    Data Mining
  17. Survey of text mining : clustering, classification, and retrieval (2004) 0.07
    0.06682759 = product of:
      0.13365518 = sum of:
        0.13365518 = product of:
          0.26731035 = sum of:
            0.26731035 = weight(_text_:mining in 804) [ClassicSimilarity], result of:
              0.26731035 = score(doc=804,freq=18.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.9351125 = fieldWeight in 804, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=804)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory. As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments. This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
    LCSH
    Data mining ; Information retrieval
    Data mining / Congresses (GBV)
    RSWK
    Text Mining / Aufsatzsammlung
    Subject
    Text Mining / Aufsatzsammlung
    Data mining ; Information retrieval
    Data mining / Congresses (GBV)
    Theme
    Data Mining
  18. Hegna, K.; Murtomaa, E.: Data mining MARC to find : FRBR? (2003) 0.06
    0.062372416 = product of:
      0.12474483 = sum of:
        0.12474483 = product of:
          0.24948967 = sum of:
            0.24948967 = weight(_text_:mining in 69) [ClassicSimilarity], result of:
              0.24948967 = score(doc=69,freq=2.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.8727716 = fieldWeight in 69, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.109375 = fieldNorm(doc=69)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  19. Budzik, J.; Hammond, K.J.; Birnbaum, L.: Information access in context (2001) 0.06
    0.062372416 = product of:
      0.12474483 = sum of:
        0.12474483 = product of:
          0.24948967 = sum of:
            0.24948967 = weight(_text_:mining in 3835) [ClassicSimilarity], result of:
              0.24948967 = score(doc=3835,freq=2.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.8727716 = fieldWeight in 3835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3835)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Data Mining
  20. He, Y.; Hui, S.C.: Mining a web database for author cocitation analysis (2002) 0.06
    0.062372416 = product of:
      0.12474483 = sum of:
        0.12474483 = product of:
          0.24948967 = sum of:
            0.24948967 = weight(_text_:mining in 2584) [ClassicSimilarity], result of:
              0.24948967 = score(doc=2584,freq=2.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.8727716 = fieldWeight in 2584, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.109375 = fieldNorm(doc=2584)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    

Languages

Types

  • a 654
  • m 84
  • el 51
  • s 46
  • b 24
  • x 2
  • i 1
  • n 1
  • r 1
  • More… Less…

Themes

Subjects

Classifications