Search (3 results, page 1 of 1)

  • × theme_ss:"Automatisches Indexieren"
  • × theme_ss:"Computerlinguistik"
  1. Snajder, J.; Dalbelo Basic, B.D.; Tadic, M.: Automatic acquisition of inflectional lexica for morphological normalisation (2008) 0.03
    0.026731037 = product of:
      0.053462073 = sum of:
        0.053462073 = product of:
          0.10692415 = sum of:
            0.10692415 = weight(_text_:mining in 2910) [ClassicSimilarity], result of:
              0.10692415 = score(doc=2910,freq=2.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                0.37404498 = fieldWeight in 2910, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2910)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Due to natural language morphology, words can take on various morphological forms. Morphological normalisation - often used in information retrieval and text mining systems - conflates morphological variants of a word to a single representative form. In this paper, we describe an approach to lexicon-based inflectional normalisation. This approach is in between stemming and lemmatisation, and is suitable for morphological normalisation of inflectionally complex languages. To eliminate the immense effort required to compile the lexicon by hand, we focus on the problem of acquiring automatically an inflectional morphological lexicon from raw corpora. We propose a convenient and highly expressive morphology representation formalism on which the acquisition procedure is based. Our approach is applied to the morphologically complex Croatian language, but it should be equally applicable to other languages of similar morphological complexity. Experimental results show that our approach can be used to acquire a lexicon whose linguistic quality allows for rather good normalisation performance.
  2. Riloff, E.: ¬An empirical study of automated dictionary construction for information extraction in three domains (1996) 0.01
    0.013728068 = product of:
      0.027456136 = sum of:
        0.027456136 = product of:
          0.054912273 = sum of:
            0.054912273 = weight(_text_:22 in 6752) [ClassicSimilarity], result of:
              0.054912273 = score(doc=6752,freq=2.0), product of:
                0.17741053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05066224 = queryNorm
                0.30952093 = fieldWeight in 6752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6752)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    6. 3.1997 16:22:15
  3. Lorenz, S.: Konzeption und prototypische Realisierung einer begriffsbasierten Texterschließung (2006) 0.01
    0.01029605 = product of:
      0.0205921 = sum of:
        0.0205921 = product of:
          0.0411842 = sum of:
            0.0411842 = weight(_text_:22 in 1746) [ClassicSimilarity], result of:
              0.0411842 = score(doc=1746,freq=2.0), product of:
                0.17741053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05066224 = queryNorm
                0.23214069 = fieldWeight in 1746, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1746)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2015 9:17:30

Languages

Types