Search (7 results, page 1 of 1)

  • × year_i:[2020 TO 2030}
  • × theme_ss:"Computerlinguistik"
  1. Luo, L.; Ju, J.; Li, Y.-F.; Haffari, G.; Xiong, B.; Pan, S.: ChatRule: mining logical rules with large language models for knowledge graph reasoning (2023) 0.08
    0.080165744 = product of:
      0.16033149 = sum of:
        0.16033149 = sum of:
          0.12601131 = weight(_text_:mining in 1171) [ClassicSimilarity], result of:
            0.12601131 = score(doc=1171,freq=4.0), product of:
              0.28585905 = queryWeight, product of:
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.05066224 = queryNorm
              0.44081625 = fieldWeight in 1171, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                5.642448 = idf(docFreq=425, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1171)
          0.034320172 = weight(_text_:22 in 1171) [ClassicSimilarity], result of:
            0.034320172 = score(doc=1171,freq=2.0), product of:
              0.17741053 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05066224 = queryNorm
              0.19345059 = fieldWeight in 1171, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1171)
      0.5 = coord(1/2)
    
    Abstract
    Logical rules are essential for uncovering the logical connections between relations, which could improve the reasoning performance and provide interpretable results on knowledge graphs (KGs). Although there have been many efforts to mine meaningful logical rules over KGs, existing methods suffer from the computationally intensive searches over the rule space and a lack of scalability for large-scale KGs. Besides, they often ignore the semantics of relations which is crucial for uncovering logical connections. Recently, large language models (LLMs) have shown impressive performance in the field of natural language processing and various applications, owing to their emergent ability and generalizability. In this paper, we propose a novel framework, ChatRule, unleashing the power of large language models for mining logical rules over knowledge graphs. Specifically, the framework is initiated with an LLM-based rule generator, leveraging both the semantic and structural information of KGs to prompt LLMs to generate logical rules. To refine the generated rules, a rule ranking module estimates the rule quality by incorporating facts from existing KGs. Last, a rule validator harnesses the reasoning ability of LLMs to validate the logical correctness of ranked rules through chain-of-thought reasoning. ChatRule is evaluated on four large-scale KGs, w.r.t. different rule quality metrics and downstream tasks, showing the effectiveness and scalability of our method.
    Date
    23.11.2023 19:07:22
  2. Al-Khatib, K.; Ghosa, T.; Hou, Y.; Waard, A. de; Freitag, D.: Argument mining for scholarly document processing : taking stock and looking ahead (2021) 0.08
    0.076390296 = product of:
      0.15278059 = sum of:
        0.15278059 = product of:
          0.30556118 = sum of:
            0.30556118 = weight(_text_:mining in 568) [ClassicSimilarity], result of:
              0.30556118 = score(doc=568,freq=12.0), product of:
                0.28585905 = queryWeight, product of:
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.05066224 = queryNorm
                1.0689225 = fieldWeight in 568, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  5.642448 = idf(docFreq=425, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=568)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Argument mining targets structures in natural language related to interpretation and persuasion. Most scholarly discourse involves interpreting experimental evidence and attempting to persuade other scientists to adopt the same conclusions, which could benefit from argument mining techniques. However, While various argument mining studies have addressed student essays and news articles, those that target scientific discourse are still scarce. This paper surveys existing work in argument mining of scholarly discourse, and provides an overview of current models, data, tasks, and applications. We identify a number of key challenges confronting argument mining in the scientific domain, and suggest some possible solutions and future directions.
  3. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.04
    0.04023253 = product of:
      0.08046506 = sum of:
        0.08046506 = product of:
          0.24139518 = sum of:
            0.24139518 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.24139518 = score(doc=862,freq=2.0), product of:
                0.429515 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05066224 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  4. ¬Der Student aus dem Computer (2023) 0.02
    0.024024118 = product of:
      0.048048235 = sum of:
        0.048048235 = product of:
          0.09609647 = sum of:
            0.09609647 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
              0.09609647 = score(doc=1079,freq=2.0), product of:
                0.17741053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05066224 = queryNorm
                0.5416616 = fieldWeight in 1079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1079)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    27. 1.2023 16:22:55
  5. Morris, V.: Automated language identification of bibliographic resources (2020) 0.01
    0.013728068 = product of:
      0.027456136 = sum of:
        0.027456136 = product of:
          0.054912273 = sum of:
            0.054912273 = weight(_text_:22 in 5749) [ClassicSimilarity], result of:
              0.054912273 = score(doc=5749,freq=2.0), product of:
                0.17741053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05066224 = queryNorm
                0.30952093 = fieldWeight in 5749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5749)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    2. 3.2020 19:04:22
  6. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.01
    0.013728068 = product of:
      0.027456136 = sum of:
        0.027456136 = product of:
          0.054912273 = sum of:
            0.054912273 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.054912273 = score(doc=835,freq=2.0), product of:
                0.17741053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05066224 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    29.12.2022 18:22:55
  7. Rieger, F.: Lügende Computer (2023) 0.01
    0.013728068 = product of:
      0.027456136 = sum of:
        0.027456136 = product of:
          0.054912273 = sum of:
            0.054912273 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.054912273 = score(doc=912,freq=2.0), product of:
                0.17741053 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05066224 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16. 3.2023 19:22:55