Search (3 results, page 1 of 1)

  • × theme_ss:"Automatisches Indexieren"
  • × type_ss:"el"
  1. Giesselbach, S.; Estler-Ziegler, T.: Dokumente schneller analysieren mit Künstlicher Intelligenz (2021) 0.04
    0.040891692 = product of:
      0.081783384 = sum of:
        0.081783384 = product of:
          0.16356677 = sum of:
            0.16356677 = weight(_text_:dokumente in 128) [ClassicSimilarity], result of:
              0.16356677 = score(doc=128,freq=10.0), product of:
                0.25999573 = queryWeight, product of:
                  5.092943 = idf(docFreq=737, maxDocs=44218)
                  0.05105019 = queryNorm
                0.6291133 = fieldWeight in 128, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  5.092943 = idf(docFreq=737, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=128)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Künstliche Intelligenz (KI) und natürliches Sprachverstehen (natural language understanding/NLU) verändern viele Aspekte unseres Alltags und unserer Arbeitsweise. Besondere Prominenz erlangte NLU durch Sprachassistenten wie Siri, Alexa und Google Now. NLU bietet Firmen und Einrichtungen das Potential, Prozesse effizienter zu gestalten und Mehrwert aus textuellen Inhalten zu schöpfen. So sind NLU-Lösungen in der Lage, komplexe, unstrukturierte Dokumente inhaltlich zu erschließen. Für die semantische Textanalyse hat das NLU-Team des IAIS Sprachmodelle entwickelt, die mit Deep-Learning-Verfahren trainiert werden. Die NLU-Suite analysiert Dokumente, extrahiert Eckdaten und erstellt bei Bedarf sogar eine strukturierte Zusammenfassung. Mit diesen Ergebnissen, aber auch über den Inhalt der Dokumente selbst, lassen sich Dokumente vergleichen oder Texte mit ähnlichen Informationen finden. KI-basierten Sprachmodelle sind der klassischen Verschlagwortung deutlich überlegen. Denn sie finden nicht nur Texte mit vordefinierten Schlagwörtern, sondern suchen intelligent nach Begriffen, die in ähnlichem Zusammenhang auftauchen oder als Synonym gebraucht werden. Der Vortrag liefert eine Einordnung der Begriffe "Künstliche Intelligenz" und "Natural Language Understanding" und zeigt Möglichkeiten, Grenzen, aktuelle Forschungsrichtungen und Methoden auf. Anhand von Praxisbeispielen wird anschließend demonstriert, wie NLU zur automatisierten Belegverarbeitung, zur Katalogisierung von großen Datenbeständen wie Nachrichten und Patenten und zur automatisierten thematischen Gruppierung von Social Media Beiträgen und Publikationen genutzt werden kann.
  2. Tavakolizadeh-Ravari, M.: Analysis of the long term dynamics in thesaurus developments and its consequences (2017) 0.03
    0.029259713 = product of:
      0.058519427 = sum of:
        0.058519427 = product of:
          0.11703885 = sum of:
            0.11703885 = weight(_text_:dokumente in 3081) [ClassicSimilarity], result of:
              0.11703885 = score(doc=3081,freq=8.0), product of:
                0.25999573 = queryWeight, product of:
                  5.092943 = idf(docFreq=737, maxDocs=44218)
                  0.05105019 = queryNorm
                0.45015684 = fieldWeight in 3081, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.092943 = idf(docFreq=737, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3081)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Die Arbeit analysiert die dynamische Entwicklung und den Gebrauch von Thesaurusbegriffen. Zusätzlich konzentriert sie sich auf die Faktoren, die die Zahl von Indexbegriffen pro Dokument oder Zeitschrift beeinflussen. Als Untersuchungsobjekt dienten der MeSH und die entsprechende Datenbank "MEDLINE". Die wichtigsten Konsequenzen sind: 1. Der MeSH-Thesaurus hat sich durch drei unterschiedliche Phasen jeweils logarithmisch entwickelt. Solch einen Thesaurus sollte folgenden Gleichung folgen: "T = 3.076,6 Ln (d) - 22.695 + 0,0039d" (T = Begriffe, Ln = natürlicher Logarithmus und d = Dokumente). Um solch einen Thesaurus zu konstruieren, muss man demnach etwa 1.600 Dokumente von unterschiedlichen Themen des Bereiches des Thesaurus haben. Die dynamische Entwicklung von Thesauri wie MeSH erfordert die Einführung eines neuen Begriffs pro Indexierung von 256 neuen Dokumenten. 2. Die Verteilung der Thesaurusbegriffe erbrachte drei Kategorien: starke, normale und selten verwendete Headings. Die letzte Gruppe ist in einer Testphase, während in der ersten und zweiten Kategorie die neu hinzukommenden Deskriptoren zu einem Thesauruswachstum führen. 3. Es gibt ein logarithmisches Verhältnis zwischen der Zahl von Index-Begriffen pro Aufsatz und dessen Seitenzahl für die Artikeln zwischen einer und einundzwanzig Seiten. 4. Zeitschriftenaufsätze, die in MEDLINE mit Abstracts erscheinen erhalten fast zwei Deskriptoren mehr. 5. Die Findablity der nicht-englisch sprachigen Dokumente in MEDLINE ist geringer als die englische Dokumente. 6. Aufsätze der Zeitschriften mit einem Impact Factor 0 bis fünfzehn erhalten nicht mehr Indexbegriffe als die der anderen von MEDINE erfassten Zeitschriften. 7. In einem Indexierungssystem haben unterschiedliche Zeitschriften mehr oder weniger Gewicht in ihrem Findability. Die Verteilung der Indexbegriffe pro Seite hat gezeigt, dass es bei MEDLINE drei Kategorien der Publikationen gibt. Außerdem gibt es wenige stark bevorzugten Zeitschriften."
  3. Junger, U.; Schwens, U.: ¬Die inhaltliche Erschließung des schriftlichen kulturellen Erbes auf dem Weg in die Zukunft : Automatische Vergabe von Schlagwörtern in der Deutschen Nationalbibliothek (2017) 0.01
    0.008645745 = product of:
      0.01729149 = sum of:
        0.01729149 = product of:
          0.03458298 = sum of:
            0.03458298 = weight(_text_:22 in 3780) [ClassicSimilarity], result of:
              0.03458298 = score(doc=3780,freq=2.0), product of:
                0.17876907 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05105019 = queryNorm
                0.19345059 = fieldWeight in 3780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3780)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    19. 8.2017 9:24:22