Search (7 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"x"
  1. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.03
    0.027027078 = product of:
      0.054054156 = sum of:
        0.054054156 = product of:
          0.16216247 = sum of:
            0.16216247 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.16216247 = score(doc=701,freq=2.0), product of:
                0.43280408 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05105019 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  2. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.03
    0.027027078 = product of:
      0.054054156 = sum of:
        0.054054156 = product of:
          0.16216247 = sum of:
            0.16216247 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.16216247 = score(doc=5820,freq=2.0), product of:
                0.43280408 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05105019 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
      0.5 = coord(1/2)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  3. Pfeiffer, S.: Entwicklung einer Ontologie für die wissensbasierte Erschließung des ISDC-Repository und die Visualisierung kontextrelevanter semantischer Zusammenhänge (2010) 0.02
    0.018103525 = product of:
      0.03620705 = sum of:
        0.03620705 = product of:
          0.0724141 = sum of:
            0.0724141 = weight(_text_:dokumente in 4658) [ClassicSimilarity], result of:
              0.0724141 = score(doc=4658,freq=4.0), product of:
                0.25999573 = queryWeight, product of:
                  5.092943 = idf(docFreq=737, maxDocs=44218)
                  0.05105019 = queryNorm
                0.27852035 = fieldWeight in 4658, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.092943 = idf(docFreq=737, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4658)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In der heutigen Zeit sind Informationen jeglicher Art über das World Wide Web (WWW) für eine breite Bevölkerungsschicht zugänglich. Dabei ist es jedoch schwierig die existierenden Dokumente auch so aufzubereiten, dass die Inhalte für Maschinen inhaltlich interpretierbar sind. Das Semantic Web, eine Weiterentwicklung des WWWs, möchte dies ändern, indem es Webinhalte in maschinenverständlichen Formaten anbietet. Dadurch können Automatisierungsprozesse für die Suchanfragenoptimierung und für die Wissensbasenvernetzung eingesetzt werden. Die Web Ontology Language (OWL) ist eine mögliche Sprache, in der Wissen beschrieben und gespeichert werden kann (siehe Kapitel 4 OWL). Das Softwareprodukt Protégé unterstützt den Standard OWL, weshalb ein Großteil der Modellierungsarbeiten in Protégé durchgeführt wurde. Momentan erhält der Nutzer in den meisten Fällen bei der Informationsfindung im Internet lediglich Unterstützung durch eine von Suchmaschinenbetreibern vorgenommene Verschlagwortung des Dokumentinhaltes, d.h. Dokumente können nur nach einem bestimmten Wort oder einer bestimmten Wortgruppe durchsucht werden. Die Ausgabeliste der Suchergebnisse muss dann durch den Nutzer selbst gesichtet und nach Relevanz geordnet werden. Das kann ein sehr zeit- und arbeitsintensiver Prozess sein. Genau hier kann das Semantic Web einen erheblichen Beitrag in der Informationsaufbereitung für den Nutzer leisten, da die Ausgabe der Suchergebnisse bereits einer semantischen Überprüfung und Verknüpfung unterliegt. Deshalb fallen hier nicht relevante Informationsquellen von vornherein bei der Ausgabe heraus, was das Finden von gesuchten Dokumenten und Informationen in einem bestimmten Wissensbereich beschleunigt.
  4. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.02
    0.01729149 = product of:
      0.03458298 = sum of:
        0.03458298 = product of:
          0.06916596 = sum of:
            0.06916596 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.06916596 = score(doc=3406,freq=2.0), product of:
                0.17876907 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05105019 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 5.2010 16:22:35
  5. Moustafid, Y. El: Semantic Web Techniken für E-Learning (2003) 0.01
    0.010972393 = product of:
      0.021944785 = sum of:
        0.021944785 = product of:
          0.04388957 = sum of:
            0.04388957 = weight(_text_:dokumente in 585) [ClassicSimilarity], result of:
              0.04388957 = score(doc=585,freq=2.0), product of:
                0.25999573 = queryWeight, product of:
                  5.092943 = idf(docFreq=737, maxDocs=44218)
                  0.05105019 = queryNorm
                0.16880882 = fieldWeight in 585, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.092943 = idf(docFreq=737, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=585)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Die vorliegende Arbeit versucht, das Thema "Topic Maps" von verschiedenen Perspektiven zu betrachten. "Topic Maps" sind geordnete Wissensnetze. Sie stellen ein Hilfsmittel dar, um sich in der immer größer werdenden Informationsvielfalt zurechtzufinden und beim Navigieren trotz einer möglichen Informationsüberflutung die Übersicht zu behalten. Wie ein Stichwortverzeichnis in einem guten Fachbuch, helfen sie, die genau gesuchte Information zu finden. Die Tatsache, dass elektronische Informationen in größerem Umfang als die Seiten eines Buches vorliegen und auf heterogenen Plattformen gespeichert sind, zieht die Konsequenz mit sich, dass Topic Maps nicht nur aus einer Liste alphabetisch sortierter Stichworte bestehen. Vielmehr werden mit Hilfe von Topic Maps logische Konzepte entworfen, die Wissensnetze semantisch modellieren. In Zusammenhang mit Topic Maps spricht Tim Berner-Lee von der dritten Revolution des Internets. Die XTM-Arbeitsgruppe wirbt sogar mit dem Slogan "Das GPS des Web". So wie eine Landkarte eine schematische Sicht auf eine reale Landschaft ermöglicht und bestimmte Merkmale der Landschaft (z.B. Städte, Straßen, Flüsse) markiert, sind Topic Map in der Lage wichtige Merkmale eines Informationsbestandes festzuhalten und in Bezug zueinander zu setzen. So wie ein GPS-Empfänger die eigene Position auf der Karte feststellt, kann eine Topic Map die Orientierung in einer virtuellen Welt vernetzter Dokumente herstellen. Das klingt etwas exotisch, hat jedoch durchaus praktische und sehr weit gefächerte Anwendungen.
  6. Müller, T.: Wissensrepräsentation mit semantischen Netzen im Bereich Luftfahrt (2006) 0.01
    0.008645745 = product of:
      0.01729149 = sum of:
        0.01729149 = product of:
          0.03458298 = sum of:
            0.03458298 = weight(_text_:22 in 1670) [ClassicSimilarity], result of:
              0.03458298 = score(doc=1670,freq=2.0), product of:
                0.17876907 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05105019 = queryNorm
                0.19345059 = fieldWeight in 1670, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1670)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26. 9.2006 21:00:22
  7. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.01
    0.006916596 = product of:
      0.013833192 = sum of:
        0.013833192 = product of:
          0.027666384 = sum of:
            0.027666384 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.027666384 = score(doc=4399,freq=2.0), product of:
                0.17876907 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05105019 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22