Search (17 results, page 1 of 1)

  • × author_ss:"Soergel, D."
  1. Fidel, R.; Soergel, D.: Factors affecting online bibliographic retrieval : a conceptual framework for research (1983) 0.04
    0.036801554 = product of:
      0.11040466 = sum of:
        0.11040466 = product of:
          0.16560699 = sum of:
            0.0830764 = weight(_text_:online in 2588) [ClassicSimilarity], result of:
              0.0830764 = score(doc=2588,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.5364998 = fieldWeight in 2588, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.125 = fieldNorm(doc=2588)
            0.08253059 = weight(_text_:retrieval in 2588) [ClassicSimilarity], result of:
              0.08253059 = score(doc=2588,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.5347345 = fieldWeight in 2588, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.125 = fieldNorm(doc=2588)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
  2. Komlodi, A.; Soergel, D.; Marchionini, G.: Search histories for user support in user interfaces (2006) 0.02
    0.016094714 = product of:
      0.048284143 = sum of:
        0.048284143 = product of:
          0.072426215 = sum of:
            0.03094897 = weight(_text_:retrieval in 5298) [ClassicSimilarity], result of:
              0.03094897 = score(doc=5298,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 5298, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5298)
            0.04147724 = weight(_text_:22 in 5298) [ClassicSimilarity], result of:
              0.04147724 = score(doc=5298,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23214069 = fieldWeight in 5298, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5298)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The authors describe user interface tools based on search histories to support legal information seekers. The design of the tools was informed by the results of a user study (Komlodi, 2002a) that examined the use of human memory, external memory aids, and search histories in legal information seeking and derived interface design recommendations for information storage and retrieval systems. The data collected were analyzed to identify potential task areas where search histories can support information seeking and use. The results show that many information-seeking tasks can take advantage of automatically and manually recorded history information. These findings encouraged the design of user interface tools building on search history information: direct search history displays, history-enabled scratchpad facilities, and organized results collection tools.
    Date
    22. 7.2006 18:04:19
  3. Soergel, D.: Indexing and retrieval performance : the logical evidence (1994) 0.01
    0.011347376 = product of:
      0.034042127 = sum of:
        0.034042127 = product of:
          0.10212638 = sum of:
            0.10212638 = weight(_text_:retrieval in 579) [ClassicSimilarity], result of:
              0.10212638 = score(doc=579,freq=16.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.6617001 = fieldWeight in 579, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=579)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This article presents a logical analysis of the characteristics of indexing and their effects on retrieval performance.It establishes the ability to ask the questions one needs to ask as the foundation of performance evaluation, and recall and discrimination as the basic quantitative performance measures for binary noninteractive retrieval systems. It then defines the characteristics of indexing that affect retrieval - namely, indexing devices, viewpoint-based and importance-based indexing exhaustivity, indexing specifity, indexing correctness, and indexing consistency - and examines in detail their effects on retrieval. It concludes that retrieval performance depends chiefly on the match between indexing and the requirements of the individual query and on the adaption of the query formulation to the characteristics of the retrieval system, and that the ensuing complexity must be considered in the design and testing of retrieval systems
  4. Soergel, D.: Knowledge organization for learning (2014) 0.01
    0.007603774 = product of:
      0.022811322 = sum of:
        0.022811322 = product of:
          0.06843396 = sum of:
            0.06843396 = weight(_text_:22 in 1400) [ClassicSimilarity], result of:
              0.06843396 = score(doc=1400,freq=4.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.38301262 = fieldWeight in 1400, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1400)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Pages
    S.22-32
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  5. Soergel, D.: Information structure management : a unified framework for indexing and searching in database, expert, information-retrieval, and hypermedia systems (1994) 0.01
    0.006877549 = product of:
      0.020632647 = sum of:
        0.020632647 = product of:
          0.06189794 = sum of:
            0.06189794 = weight(_text_:retrieval in 2984) [ClassicSimilarity], result of:
              0.06189794 = score(doc=2984,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.40105087 = fieldWeight in 2984, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2984)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
  6. Wang, P.; Soergel, D.: Beyond topical relevance : document selection behaviour of real users of IR systems (1993) 0.01
    0.0064842156 = product of:
      0.019452646 = sum of:
        0.019452646 = product of:
          0.058357935 = sum of:
            0.058357935 = weight(_text_:retrieval in 7960) [ClassicSimilarity], result of:
              0.058357935 = score(doc=7960,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.37811437 = fieldWeight in 7960, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7960)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Reports on part of a study of real users' behaviour in selecting documents from a list of citations resulting from a search of an information retrieval system. Document selection involves value judgements and decision making. Understanding how users evaluate documents and make decisions provides a basis for designing intelligent information retrieval system that can do a better job of predicting usefulness
  7. Berti, Jr., D.W.; Lima, G.; Maculan, B.; Soergel, D.: Computer-assisted checking of conceptual relationships in a large thesaurus (2018) 0.01
    0.006144777 = product of:
      0.01843433 = sum of:
        0.01843433 = product of:
          0.055302992 = sum of:
            0.055302992 = weight(_text_:22 in 4721) [ClassicSimilarity], result of:
              0.055302992 = score(doc=4721,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.30952093 = fieldWeight in 4721, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4721)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    17. 1.2019 19:04:22
  8. Soergel, D.: Mathematical analysis of documentation systems : an attempt to a theory of classification and search request formulation (1967) 0.01
    0.005731291 = product of:
      0.017193872 = sum of:
        0.017193872 = product of:
          0.051581617 = sum of:
            0.051581617 = weight(_text_:retrieval in 5449) [ClassicSimilarity], result of:
              0.051581617 = score(doc=5449,freq=8.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.33420905 = fieldWeight in 5449, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5449)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    As an attempt to make a general structural theory of information retrieval, a documentation system (DS) is defined as a formal system consisting of (a) a set o of objects (documents); (b) a set A++ of elementary attributes (key-words), from which further attributes may be constructed: A++ generates A; (c) a set of axioms of the form X++(x)=m (m¯M, M a set of constant connecting attributes with objects: from the axioms further theorems (=true statements) may be constructed. By use of the theorems, different mappings O -> P(o) (P(o) set of all subsets of o) (search question -> set of documents retrieved) are defined. The type of a DS depends on two basic decisions: (1) choice of the rules for the construction of attributes and theorems, e.g., logical product in coordinate indexing; links. (2) choice of M; M may consist of the two constants 'applicable' and 'not applicable', or some positive integers, ...; Further practical decisions: A++ hierarchical or not; kind of mapping; introduction of roles (=further attributes). The most simple case - ordinary two-valued Coordinate Indexing - is discusssed in detail; o is a free distributive (but not Boolean) lattice, the homographic image a ring of subsets of o; instead of negation which is not useful, a useful retrieval operation 'praeternagation' is introduced. Furthermore these are discussed: a generalized definition of superimposed coding, some functions for the distance of objects or attributes; optimization and automatic derivation of classifications. The model takes into account term-term relations and document-document relations. It may serve as a structural framework in terms of which the functional problems of retrieval theory may be expressed more clearly
    Source
    Information storage and retrieval. 3(1967), S.129-173
  9. Golub, K.; Soergel, D.; Buchanan, G.; Tudhope, D.; Lykke, M.; Hiom, D.: ¬A framework for evaluating automatic indexing or classification in the context of retrieval (2016) 0.00
    0.0049634436 = product of:
      0.014890331 = sum of:
        0.014890331 = product of:
          0.04467099 = sum of:
            0.04467099 = weight(_text_:retrieval in 3311) [ClassicSimilarity], result of:
              0.04467099 = score(doc=3311,freq=6.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.28943354 = fieldWeight in 3311, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3311)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Tools for automatic subject assignment help deal with scale and sustainability in creating and enriching metadata, establishing more connections across and between resources and enhancing consistency. Although some software vendors and experimental researchers claim the tools can replace manual subject indexing, hard scientific evidence of their performance in operating information environments is scarce. A major reason for this is that research is usually conducted in laboratory conditions, excluding the complexities of real-life systems and situations. The article reviews and discusses issues with existing evaluation approaches such as problems of aboutness and relevance assessments, implying the need to use more than a single "gold standard" method when evaluating indexing and retrieval, and proposes a comprehensive evaluation framework. The framework is informed by a systematic review of the literature on evaluation approaches: evaluating indexing quality directly through assessment by an evaluator or through comparison with a gold standard, evaluating the quality of computer-assisted indexing directly in the context of an indexing workflow, and evaluating indexing quality indirectly through analyzing retrieval performance.
  10. Ahn, J.-w.; Soergel, D.; Lin, X.; Zhang, M.: Mapping between ARTstor terms and the Getty Art and Architecture Thesaurus (2014) 0.00
    0.0046085827 = product of:
      0.013825747 = sum of:
        0.013825747 = product of:
          0.04147724 = sum of:
            0.04147724 = weight(_text_:22 in 1421) [ClassicSimilarity], result of:
              0.04147724 = score(doc=1421,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23214069 = fieldWeight in 1421, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1421)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  11. Soergel, D.: Indexing and retrieval performance : the logical evidence (1997) 0.00
    0.004585033 = product of:
      0.013755098 = sum of:
        0.013755098 = product of:
          0.041265294 = sum of:
            0.041265294 = weight(_text_:retrieval in 578) [ClassicSimilarity], result of:
              0.041265294 = score(doc=578,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.26736724 = fieldWeight in 578, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0625 = fieldNorm(doc=578)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
  12. Golub, K.; Hansson, J.; Soergel, D.; Tudhope, D.: Managing classification in libraries : a methodological outline for evaluating automatic subject indexing and classification in Swedish library catalogues (2015) 0.00
    0.004052635 = product of:
      0.012157904 = sum of:
        0.012157904 = product of:
          0.03647371 = sum of:
            0.03647371 = weight(_text_:retrieval in 2300) [ClassicSimilarity], result of:
              0.03647371 = score(doc=2300,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 2300, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2300)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Subject terms play a crucial role in resource discovery but require substantial effort to produce. Automatic subject classification and indexing address problems of scale and sustainability and can be used to enrich existing bibliographic records, establish more connections across and between resources and enhance consistency of bibliographic data. The paper aims to put forward a complex methodological framework to evaluate automatic classification tools of Swedish textual documents based on the Dewey Decimal Classification (DDC) recently introduced to Swedish libraries. Three major complementary approaches are suggested: a quality-built gold standard, retrieval effects, domain analysis. The gold standard is built based on input from at least two catalogue librarians, end-users expert in the subject, end users inexperienced in the subject and automated tools. Retrieval effects are studied through a combination of assigned and free tasks, including factual and comprehensive types. The study also takes into consideration the different role and character of subject terms in various knowledge domains, such as scientific disciplines. As a theoretical framework, domain analysis is used and applied in relation to the implementation of DDC in Swedish libraries and chosen domains of knowledge within the DDC itself.
  13. Ding, W.; Soergel, D.; Marchionini, G.: Performance of visual, verbal, and combined video surrogates (1999) 0.00
    0.004011904 = product of:
      0.012035711 = sum of:
        0.012035711 = product of:
          0.03610713 = sum of:
            0.03610713 = weight(_text_:retrieval in 6679) [ClassicSimilarity], result of:
              0.03610713 = score(doc=6679,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23394634 = fieldWeight in 6679, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6679)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This study investigates the information representation power of different modalities in the video data in order to collect empirical evidence for video surrogate creation and thus better support effective video browsing and information retrieval. Three types of video surrogates - keyframe, keyword/phrase, and combination of the two were created and compared under two user tasks-verbal comprehension and visual gisting in user performance and preference. Results and discussions follow
  14. Zhang, P.; Soergel, D.: Towards a comprehensive model of the cognitive process and mechanisms of individual sensemaking (2014) 0.00
    0.0038404856 = product of:
      0.011521457 = sum of:
        0.011521457 = product of:
          0.03456437 = sum of:
            0.03456437 = weight(_text_:22 in 1344) [ClassicSimilarity], result of:
              0.03456437 = score(doc=1344,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.19345059 = fieldWeight in 1344, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1344)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    22. 8.2014 16:55:39
  15. Soergel, D.: Unleashing the power of data through organization : structure and connections for meaning, learning and discovery (2015) 0.00
    0.0038404856 = product of:
      0.011521457 = sum of:
        0.011521457 = product of:
          0.03456437 = sum of:
            0.03456437 = weight(_text_:22 in 2376) [ClassicSimilarity], result of:
              0.03456437 = score(doc=2376,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.19345059 = fieldWeight in 2376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2376)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    27.11.2015 20:52:22
  16. Wang, P.; Soergel, D.: ¬A cognitive model of document use during a research project : Study I: Document selection (1998) 0.00
    0.0028656456 = product of:
      0.008596936 = sum of:
        0.008596936 = product of:
          0.025790809 = sum of:
            0.025790809 = weight(_text_:retrieval in 443) [ClassicSimilarity], result of:
              0.025790809 = score(doc=443,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16710453 = fieldWeight in 443, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=443)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This article proposes a model of document selection by real users of a bibliographic retrieval system. It reports on Part 1 of a longitudinal study of decision making on document use by academics during a actual research project. (Part 2 followed up the same users on how the selected documents were actually used in subsequent stages). The participants are 25 self-selected faculty and graduate students in Agricultural Economics. After a reference interview, the researcher conducted a search of DIALOG databases and prepared a printout. The users selected documents from this printout, They were asked to read and think aloud while selecting documents. There verbal reports were recorded and analyzed from a utiliy-theoretic perspective. The following model of the decision-making in the selection process emerged: document information lemenets (DIEs) in document records provide the information for judging the documents on 11 criteria (including topicality, orientation, quality, novelty, and authority); the criteria judgments are comninded in an assessment of document value along 5 dimensions (Epistemic, functional, conditional, social, and emotional values), leading to the use decision. This model accounts for the use of personal knowledge and decision strategies applied in the selection process. The model has implications for the design of an intelligent document selection assistant
  17. Huang, X.; Soergel, D.: Relevance: an improved framework for explicating the notion (2013) 0.00
    0.0028656456 = product of:
      0.008596936 = sum of:
        0.008596936 = product of:
          0.025790809 = sum of:
            0.025790809 = weight(_text_:retrieval in 527) [ClassicSimilarity], result of:
              0.025790809 = score(doc=527,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16710453 = fieldWeight in 527, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=527)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Synthesizing and building on many ideas from the literature, this article presents an improved conceptual framework that clarifies the notion of relevance with its many elements, variables, criteria, and situational factors. Relevance is defined as a Relationship (R) between an Information Object (I) and an Information Need (N) (which consists of Topic, User, Problem/Task, and Situation/Context) with focus on R. This defines Relevance-as-is (conceptual relevance, strong relevance). To determine relevance, an Agent A (a person or system) operates on a representation I? of the information object and a representation N? of the information need, resulting in relevance-as-determined (operational measure of relevance, weak relevance, an approximation). Retrieval tests compare relevance-as-determined by different agents. This article discusses and compares two major approaches to conceptualizing relevance: the entity-focused approach (focus on elaborating the entities involved in relevance) and the relationship-focused approach (focus on explicating the relational nature of relevance). The article argues that because relevance is fundamentally a relational construct the relationship-focused approach deserves a higher priority and more attention than it has received. The article further elaborates on the elements of the framework with a focus on clarifying several critical issues on the discourse on relevance.