Search (64 results, page 1 of 4)

  • × language_ss:"e"
  • × theme_ss:"Visualisierung"
  1. Hajdu Barát, A.: Usability and the user interfaces of classical information retrieval languages (2006) 0.07
    0.06656098 = product of:
      0.099841475 = sum of:
        0.031532075 = weight(_text_:im in 232) [ClassicSimilarity], result of:
          0.031532075 = score(doc=232,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.2186231 = fieldWeight in 232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0546875 = fieldNorm(doc=232)
        0.0683094 = product of:
          0.102464095 = sum of:
            0.051400907 = weight(_text_:online in 232) [ClassicSimilarity], result of:
              0.051400907 = score(doc=232,freq=4.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.33194235 = fieldWeight in 232, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=232)
            0.05106319 = weight(_text_:retrieval in 232) [ClassicSimilarity], result of:
              0.05106319 = score(doc=232,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.33085006 = fieldWeight in 232, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=232)
          0.6666667 = coord(2/3)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper examines some traditional information searching methods and their role in Hungarian OPACs. What challenges are there in the digital and online environment? How do users work with them and do they give users satisfactory results? What kinds of techniques are users employing? In this paper I examine the user interfaces of UDC, thesauri, subject headings etc. in the Hungarian library. The key question of the paper is whether a universal system or local solutions is the best approach for searching in the digital environment.
    Theme
    Klassifikationssysteme im Online-Retrieval
  2. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.06
    0.055510476 = product of:
      0.083265714 = sum of:
        0.01801833 = weight(_text_:im in 2643) [ClassicSimilarity], result of:
          0.01801833 = score(doc=2643,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.12492748 = fieldWeight in 2643, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.03125 = fieldNorm(doc=2643)
        0.06524739 = product of:
          0.09787108 = sum of:
            0.035973143 = weight(_text_:online in 2643) [ClassicSimilarity], result of:
              0.035973143 = score(doc=2643,freq=6.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23231125 = fieldWeight in 2643, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2643)
            0.061897933 = weight(_text_:retrieval in 2643) [ClassicSimilarity], result of:
              0.061897933 = score(doc=2643,freq=18.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.40105084 = fieldWeight in 2643, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2643)
          0.6666667 = coord(2/3)
      0.6666667 = coord(2/3)
    
    Abstract
    Selection of search terms in an online search environment can be facilitated by the visual display of a knowledge map showing the various concepts and their links. This paper reports an a preliminary research aimed at designing a prototype knowledge map using DDC and its visual display. The prototype knowledge map created using the Protégé and TGViz freeware has been demonstrated, and further areas of research in this field are discussed.
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).
    Theme
    Klassifikationssysteme im Online-Retrieval
  3. Vizine-Goetz, D.: DeweyBrowser (2006) 0.05
    0.053222746 = product of:
      0.07983412 = sum of:
        0.031532075 = weight(_text_:im in 5774) [ClassicSimilarity], result of:
          0.031532075 = score(doc=5774,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.2186231 = fieldWeight in 5774, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5774)
        0.04830204 = product of:
          0.07245306 = sum of:
            0.03634593 = weight(_text_:online in 5774) [ClassicSimilarity], result of:
              0.03634593 = score(doc=5774,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23471867 = fieldWeight in 5774, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5774)
            0.03610713 = weight(_text_:retrieval in 5774) [ClassicSimilarity], result of:
              0.03610713 = score(doc=5774,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23394634 = fieldWeight in 5774, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5774)
          0.6666667 = coord(2/3)
      0.6666667 = coord(2/3)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
  4. Ahn, J.-w.; Brusilovsky, P.: Adaptive visualization for exploratory information retrieval (2013) 0.05
    0.04947883 = product of:
      0.07421824 = sum of:
        0.022522911 = weight(_text_:im in 2717) [ClassicSimilarity], result of:
          0.022522911 = score(doc=2717,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.15615936 = fieldWeight in 2717, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2717)
        0.05169533 = product of:
          0.07754299 = sum of:
            0.025961377 = weight(_text_:online in 2717) [ClassicSimilarity], result of:
              0.025961377 = score(doc=2717,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16765618 = fieldWeight in 2717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2717)
            0.051581617 = weight(_text_:retrieval in 2717) [ClassicSimilarity], result of:
              0.051581617 = score(doc=2717,freq=8.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.33420905 = fieldWeight in 2717, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2717)
          0.6666667 = coord(2/3)
      0.6666667 = coord(2/3)
    
    Abstract
    As the volume and breadth of online information is rapidly increasing, ad hoc search systems become less and less efficient to answer information needs of modern users. To support the growing complexity of search tasks, researchers in the field of information developed and explored a range of approaches that extend the traditional ad hoc retrieval paradigm. Among these approaches, personalized search systems and exploratory search systems attracted many followers. Personalized search explored the power of artificial intelligence techniques to provide tailored search results according to different user interests, contexts, and tasks. In contrast, exploratory search capitalized on the power of human intelligence by providing users with more powerful interfaces to support the search process. As these approaches are not contradictory, we believe that they can re-enforce each other. We argue that the effectiveness of personalized search systems may be increased by allowing users to interact with the system and learn/investigate the problem in order to reach the final goal. We also suggest that an interactive visualization approach could offer a good ground to combine the strong sides of personalized and exploratory search approaches. This paper proposes a specific way to integrate interactive visualization and personalized search and introduces an adaptive visualization based search system Adaptive VIBE that implements it. We tested the effectiveness of Adaptive VIBE and investigated its strengths and weaknesses by conducting a full-scale user study. The results show that Adaptive VIBE can improve the precision and the productivity of the personalized search system while helping users to discover more diverse sets of information.
    Footnote
    Beitrag im Rahmen einer Special section on Human-computer Information Retrieval.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  5. Slavic, A.: Interface to classification : some objectives and options (2006) 0.05
    0.0456195 = product of:
      0.06842925 = sum of:
        0.027027493 = weight(_text_:im in 2131) [ClassicSimilarity], result of:
          0.027027493 = score(doc=2131,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.18739122 = fieldWeight in 2131, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.046875 = fieldNorm(doc=2131)
        0.04140175 = product of:
          0.062102623 = sum of:
            0.031153653 = weight(_text_:online in 2131) [ClassicSimilarity], result of:
              0.031153653 = score(doc=2131,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20118743 = fieldWeight in 2131, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2131)
            0.03094897 = weight(_text_:retrieval in 2131) [ClassicSimilarity], result of:
              0.03094897 = score(doc=2131,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 2131, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2131)
          0.6666667 = coord(2/3)
      0.6666667 = coord(2/3)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
  6. Koch, T.; Golub, K.; Ardö, A.: Users browsing behaviour in a DDC-based Web service : a log analysis (2006) 0.05
    0.0456195 = product of:
      0.06842925 = sum of:
        0.027027493 = weight(_text_:im in 2234) [ClassicSimilarity], result of:
          0.027027493 = score(doc=2234,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.18739122 = fieldWeight in 2234, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.046875 = fieldNorm(doc=2234)
        0.04140175 = product of:
          0.062102623 = sum of:
            0.031153653 = weight(_text_:online in 2234) [ClassicSimilarity], result of:
              0.031153653 = score(doc=2234,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20118743 = fieldWeight in 2234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2234)
            0.03094897 = weight(_text_:retrieval in 2234) [ClassicSimilarity], result of:
              0.03094897 = score(doc=2234,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 2234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2234)
          0.6666667 = coord(2/3)
      0.6666667 = coord(2/3)
    
    Theme
    Klassifikationssysteme im Online-Retrieval
  7. Beagle, D.: Visualizing keyword distribution across multidisciplinary c-space (2003) 0.03
    0.030712081 = product of:
      0.04606812 = sum of:
        0.013513747 = weight(_text_:im in 1202) [ClassicSimilarity], result of:
          0.013513747 = score(doc=1202,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.09369561 = fieldWeight in 1202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
        0.032554373 = product of:
          0.048831556 = sum of:
            0.02202896 = weight(_text_:online in 1202) [ClassicSimilarity], result of:
              0.02202896 = score(doc=1202,freq=4.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.142261 = fieldWeight in 1202, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1202)
            0.026802596 = weight(_text_:retrieval in 1202) [ClassicSimilarity], result of:
              0.026802596 = score(doc=1202,freq=6.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.17366013 = fieldWeight in 1202, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1202)
          0.6666667 = coord(2/3)
      0.6666667 = coord(2/3)
    
    Abstract
    The concept of c-space is proposed as a visualization schema relating containers of content to cataloging surrogates and classification structures. Possible applications of keyword vector clusters within c-space could include improved retrieval rates through the use of captioning within visual hierarchies, tracings of semantic bleeding among subclasses, and access to buried knowledge within subject-neutral publication containers. The Scholastica Project is described as one example, following a tradition of research dating back to the 1980's. Preliminary focus group assessment indicates that this type of classification rendering may offer digital library searchers enriched entry strategies and an expanded range of re-entry vocabularies. Those of us who work in traditional libraries typically assume that our systems of classification: Library of Congress Classification (LCC) and Dewey Decimal Classification (DDC), are descriptive rather than prescriptive. In other words, LCC classes and subclasses approximate natural groupings of texts that reflect an underlying order of knowledge, rather than arbitrary categories prescribed by librarians to facilitate efficient shelving. Philosophical support for this assumption has traditionally been found in a number of places, from the archetypal tree of knowledge, to Aristotelian categories, to the concept of discursive formations proposed by Michel Foucault. Gary P. Radford has elegantly described an encounter with Foucault's discursive formations in the traditional library setting: "Just by looking at the titles on the spines, you can see how the books cluster together...You can identify those books that seem to form the heart of the discursive formation and those books that reside on the margins. Moving along the shelves, you see those books that tend to bleed over into other classifications and that straddle multiple discursive formations. You can physically and sensually experience...those points that feel like state borders or national boundaries, those points where one subject ends and another begins, or those magical places where one subject has morphed into another..."
    But what happens to this awareness in a digital library? Can discursive formations be represented in cyberspace, perhaps through diagrams in a visualization interface? And would such a schema be helpful to a digital library user? To approach this question, it is worth taking a moment to reconsider what Radford is looking at. First, he looks at titles to see how the books cluster. To illustrate, I scanned one hundred books on the shelves of a college library under subclass HT 101-395, defined by the LCC subclass caption as Urban groups. The City. Urban sociology. Of the first 100 titles in this sequence, fifty included the word "urban" or variants (e.g. "urbanization"). Another thirty-five used the word "city" or variants. These keywords appear to mark their titles as the heart of this discursive formation. The scattering of titles not using "urban" or "city" used related terms such as "town," "community," or in one case "skyscrapers." So we immediately see some empirical correlation between keywords and classification. But we also see a problem with the commonly used search technique of title-keyword. A student interested in urban studies will want to know about this entire subclass, and may wish to browse every title available therein. A title-keyword search on "urban" will retrieve only half of the titles, while a search on "city" will retrieve just over a third. There will be no overlap, since no titles in this sample contain both words. The only place where both words appear in a common string is in the LCC subclass caption, but captions are not typically indexed in library Online Public Access Catalogs (OPACs). In a traditional library, this problem is mitigated when the student goes to the shelf looking for any one of the books and suddenly discovers a much wider selection than the keyword search had led him to expect. But in a digital library, the issue of non-retrieval can be more problematic, as studies have indicated. Micco and Popp reported that, in a study funded partly by the U.S. Department of Education, 65 of 73 unskilled users searching for material on U.S./Soviet foreign relations found some material but never realized they had missed a large percentage of what was in the database.
    Theme
    Klassifikationssysteme im Online-Retrieval
  8. Golub, K.; Ziolkowski, P.M.; Zlodi, G.: Organizing subject access to cultural heritage in Swedish online museums (2022) 0.02
    0.019490317 = product of:
      0.058470946 = sum of:
        0.058470946 = product of:
          0.08770642 = sum of:
            0.046441127 = weight(_text_:online in 688) [ClassicSimilarity], result of:
              0.046441127 = score(doc=688,freq=10.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.29991254 = fieldWeight in 688, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.03125 = fieldNorm(doc=688)
            0.041265294 = weight(_text_:retrieval in 688) [ClassicSimilarity], result of:
              0.041265294 = score(doc=688,freq=8.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.26736724 = fieldWeight in 688, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=688)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose The study aims to paint a representative picture of the current state of search interfaces of Swedish online museum collections, focussing on search functionalities with particular reference to subject searching, as well as the use of controlled vocabularies, with the purpose of identifying which improvements of the search interfaces are needed to ensure high-quality information retrieval for the end user. Design/methodology/approach In the first step, a set of 21 search interface criteria was identified, based on related research and current standards in the domain of cultural heritage knowledge organization. Secondly, a complete set of Swedish museums that provide online access to their collections was identified, comprising nine cross-search services and 91 individual museums' websites. These 100 websites were each evaluated against the 21 criteria, between 1 July and 31 August 2020. Findings Although many standards and guidelines are in place to ensure quality-controlled subject indexing, which in turn support information retrieval of relevant resources (as individual or full search results), the study shows that they are not broadly implemented, resulting in information retrieval failures for the end user. The study also demonstrates a strong need for the implementation of controlled vocabularies in these museums. Originality/value This study is a rare piece of research which examines subject searching in online museums; the 21 search criteria and their use in the analysis of the complete set of online collections of a country represents a considerable and unique contribution to the fields of knowledge organization and information retrieval of cultural heritage. Its particular value lies in showing how the needs of end users, many of which are documented and reflected in international standards and guidelines, should be taken into account in designing search tools for these museums; especially so in subject searching, which is the most complex and yet the most common type of search. Much effort has been invested into digitizing cultural heritage collections, but access to them is hindered by poor search functionality. This study identifies which are the most important aspects to improve.
  9. Koshman, S.: Comparing usability between a visualization and text-based system for information retrieval (2004) 0.02
    0.0188353 = product of:
      0.0565059 = sum of:
        0.0565059 = product of:
          0.08475885 = sum of:
            0.031153653 = weight(_text_:online in 4424) [ClassicSimilarity], result of:
              0.031153653 = score(doc=4424,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20118743 = fieldWeight in 4424, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4424)
            0.05360519 = weight(_text_:retrieval in 4424) [ClassicSimilarity], result of:
              0.05360519 = score(doc=4424,freq=6.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.34732026 = fieldWeight in 4424, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4424)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This investigation tested the designer assumption that VIBE is a tool for an expert user and asked: what are the effects of user expertise on usability when VIBE's non-traditional interface is compared with a more traditional text-based interface? Three user groups - novices, online searching experts, and VIBE system experts - totaling 31 participants, were asked to use and compare VIBE to a more traditional text-based system, askSam. No significant differences were found; however, significant performance differences were found for some tasks on the two systems. Participants understood the basic principles underlying VIBE although they generally favored the askSam system. The findings suggest that VIBE is a learnable system and its components have pragmatic application to the development of visualized information retrieval systems. Further research is recommended to maximize the retrieval potential of IR visualization systems.
  10. Koshman, S.: Testing user interaction with a prototype visualization-based information retrieval system (2005) 0.02
    0.018085763 = product of:
      0.054257285 = sum of:
        0.054257285 = product of:
          0.081385925 = sum of:
            0.036714934 = weight(_text_:online in 3562) [ClassicSimilarity], result of:
              0.036714934 = score(doc=3562,freq=4.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23710167 = fieldWeight in 3562, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3562)
            0.04467099 = weight(_text_:retrieval in 3562) [ClassicSimilarity], result of:
              0.04467099 = score(doc=3562,freq=6.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.28943354 = fieldWeight in 3562, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3562)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The VIBE (Visual Information Browsing Environment) prototype system, which was developed at Molde College in Norway in conjunction with researchers at the University of Pittsburgh, allows users to evaluate documents from a retrieved set that is graphically represented as geometric icons within one screen display. While the formal modeling behind VIBE and other information visualization retrieval systems is weIl known, user interaction with the system is not. This investigation tested the designer assumption that VIBE is a tool for a smart (expert) user and asked: What are the effects of the different levels of user expertise upon VIBE usability? Three user groups including novices, online searching experts, and VIBE system experts totaling 31 participants were tested over two sessions with VIBE. Participants selected appropriate features to complete tasks, but did not always solve the tasks correctly. Task timings improved over repeated use with VIBE and the nontypical visually oriented tasks were resolved more successfully than others. Statistically significant differences were not found among all parameters examined between novices and online experts. The VIBE system experts provided the predicted baseline for this study and the VIBE designer assumption was shown to be correct. The study's results point toward further exploration of cognitive preattentive processing, which may help to understand better the novice/expert paradigm when testing a visualized interface design for information retrieval.
  11. Neubauer, G.: Visualization of typed links in linked data (2017) 0.02
    0.015015274 = product of:
      0.045045823 = sum of:
        0.045045823 = weight(_text_:im in 3912) [ClassicSimilarity], result of:
          0.045045823 = score(doc=3912,freq=8.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.3123187 = fieldWeight in 3912, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3912)
      0.33333334 = coord(1/3)
    
    Abstract
    Das Themengebiet der Arbeit behandelt Visualisierungen von typisierten Links in Linked Data. Die wissenschaftlichen Gebiete, die im Allgemeinen den Inhalt des Beitrags abgrenzen, sind das Semantic Web, das Web of Data und Informationsvisualisierung. Das Semantic Web, das von Tim Berners Lee 2001 erfunden wurde, stellt eine Erweiterung zum World Wide Web (Web 2.0) dar. Aktuelle Forschungen beziehen sich auf die Verknüpfbarkeit von Informationen im World Wide Web. Um es zu ermöglichen, solche Verbindungen wahrnehmen und verarbeiten zu können sind Visualisierungen die wichtigsten Anforderungen als Hauptteil der Datenverarbeitung. Im Zusammenhang mit dem Sematic Web werden Repräsentationen von zusammenhängenden Informationen anhand von Graphen gehandhabt. Der Grund des Entstehens dieser Arbeit ist in erster Linie die Beschreibung der Gestaltung von Linked Data-Visualisierungskonzepten, deren Prinzipien im Rahmen einer theoretischen Annäherung eingeführt werden. Anhand des Kontexts führt eine schrittweise Erweiterung der Informationen mit dem Ziel, praktische Richtlinien anzubieten, zur Vernetzung dieser ausgearbeiteten Gestaltungsrichtlinien. Indem die Entwürfe zweier alternativer Visualisierungen einer standardisierten Webapplikation beschrieben werden, die Linked Data als Netzwerk visualisiert, konnte ein Test durchgeführt werden, der deren Kompatibilität zum Inhalt hatte. Der praktische Teil behandelt daher die Designphase, die Resultate, und zukünftige Anforderungen des Projektes, die durch die Testung ausgearbeitet wurden.
  12. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.01
    0.013450166 = product of:
      0.040350497 = sum of:
        0.040350497 = product of:
          0.060525745 = sum of:
            0.025961377 = weight(_text_:online in 3070) [ClassicSimilarity], result of:
              0.025961377 = score(doc=3070,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16765618 = fieldWeight in 3070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3070)
            0.03456437 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
              0.03456437 = score(doc=3070,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.19345059 = fieldWeight in 3070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3070)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - The purpose of this paper is to investigate user experiences with a touch-wall interface featuring both clustering and categorization representations of available e-books in a public library to understand human information interactions under work-focused and recreational contexts. Design/methodology/approach - Researchers collected questionnaires from 251 New Taipei City Library visitors who used the touch-wall interface to search for new titles. The authors applied structural equation modelling to examine relationships among hedonic/utilitarian needs, clustering and categorization representations, perceived ease of use (EU) and the extent to which users experienced anxiety and uncertainty (AU) while interacting with the interface. Findings - Utilitarian users who have an explicit idea of what they intend to find tend to prefer the categorization interface. A hedonic-oriented user tends to prefer clustering interfaces. Users reported EU regardless of which interface they engaged with. Results revealed that use of the clustering interface had a negative correlation with AU. Users that seek to satisfy utilitarian needs tended to emphasize the importance of perceived EU, whilst pleasure-seeking users were a little more tolerant of anxiety or uncertainty. Originality/value - The Online Public Access Catalogue (OPAC) encourages library visitors to borrow digital books through the implementation of an information visualization system. This situation poses an opportunity to validate uses and gratification theory. People with hedonic/utilitarian needs displayed different risk-control attitudes and affected uncertainty using the interface. Knowledge about user interaction with such interfaces is vital when launching the development of a new OPAC.
    Date
    20. 1.2015 18:30:22
  13. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.01
    0.012628993 = product of:
      0.037886977 = sum of:
        0.037886977 = product of:
          0.056830466 = sum of:
            0.029178968 = weight(_text_:retrieval in 1444) [ClassicSimilarity], result of:
              0.029178968 = score(doc=1444,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.18905719 = fieldWeight in 1444, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
            0.027651496 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
              0.027651496 = score(doc=1444,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.15476047 = fieldWeight in 1444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Acquiring knowledge in any field involves information retrieval, i.e. searching the available documents to identify answers to the queries concerning the selected objects. Knowing the keywords which are names of the objects will enable situating the user's query in the information space organized as a thesaurus or faceted classification. Objectives: Identification the areas in the information space which correspond to gaps in the user's personal knowledge or in the domain knowledge might become useful in theory or practice. The aim of this paper is to present a realistic information-space model of a self-authored full-text document on information culture, indexed by the author of this article. Methodology: Having established the relations between the terms, particular modules (sets of terms connected by relations used in facet classification) are situated on a plain, similarly to a communication map. Conclusions drawn from the "journey" on the map, which is a visualization of the knowledge contained in the analysed document, are the crucial part of this paper. Results: The direct result of the research is the created model of information space visualization of a given document (book, article, website). The proposed procedure can practically be used as a new form of representation in order to map the contents of academic books and articles, beside the traditional index form, especially as an e-book auxiliary tool. In teaching, visualization of the information space of a document can be used to help students understand the issues of: classification, categorization and representation of new knowledge emerging in human mind.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  14. Zhang, J.; Mostafa, J.; Tripathy, H.: Information retrieval by semantic analysis and visualization of the concept space of D-Lib® magazine (2002) 0.01
    0.012184707 = product of:
      0.03655412 = sum of:
        0.03655412 = product of:
          0.054831177 = sum of:
            0.018357467 = weight(_text_:online in 1211) [ClassicSimilarity], result of:
              0.018357467 = score(doc=1211,freq=4.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.11855084 = fieldWeight in 1211, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1211)
            0.03647371 = weight(_text_:retrieval in 1211) [ClassicSimilarity], result of:
              0.03647371 = score(doc=1211,freq=16.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23632148 = fieldWeight in 1211, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1211)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article we present a method for retrieving documents from a digital library through a visual interface based on automatically generated concepts. We used a vocabulary generation algorithm to generate a set of concepts for the digital library and a technique called the max-min distance technique to cluster them. Additionally, the concepts were visualized in a spring embedding graph layout to depict the semantic relationship among them. The resulting graph layout serves as an aid to users for retrieving documents. An online archive containing the contents of D-Lib Magazine from July 1995 to May 2002 was used to test the utility of an implemented retrieval and visualization system. We believe that the method developed and tested can be applied to many different domains to help users get a better understanding of online document collections and to minimize users' cognitive load during execution of search tasks. Over the past few years, the volume of information available through the World Wide Web has been expanding exponentially. Never has so much information been so readily available and shared among so many people. Unfortunately, the unstructured nature and huge volume of information accessible over networks have made it hard for users to sift through and find relevant information. To deal with this problem, information retrieval (IR) techniques have gained more intensive attention from both industrial and academic researchers. Numerous IR techniques have been developed to help deal with the information overload problem. These techniques concentrate on mathematical models and algorithms for retrieval. Popular IR models such as the Boolean model, the vector-space model, the probabilistic model and their variants are well established.
    From the user's perspective, however, it is still difficult to use current information retrieval systems. Users frequently have problems expressing their information needs and translating those needs into queries. This is partly due to the fact that information needs cannot be expressed appropriately in systems terms. It is not unusual for users to input search terms that are different from the index terms information systems use. Various methods have been proposed to help users choose search terms and articulate queries. One widely used approach is to incorporate into the information system a thesaurus-like component that represents both the important concepts in a particular subject area and the semantic relationships among those concepts. Unfortunately, the development and use of thesauri is not without its own problems. The thesaurus employed in a specific information system has often been developed for a general subject area and needs significant enhancement to be tailored to the information system where it is to be used. This thesaurus development process, if done manually, is both time consuming and labor intensive. Usage of a thesaurus in searching is complex and may raise barriers for the user. For illustration purposes, let us consider two scenarios of thesaurus usage. In the first scenario the user inputs a search term and the thesaurus then displays a matching set of related terms. Without an overview of the thesaurus - and without the ability to see the matching terms in the context of other terms - it may be difficult to assess the quality of the related terms in order to select the correct term. In the second scenario the user browses the whole thesaurus, which is organized as in an alphabetically ordered list. The problem with this approach is that the list may be long, and neither does it show users the global semantic relationship among all the listed terms.
    Nevertheless, because thesaurus use has shown to improve retrieval, for our method we integrate functions in the search interface that permit users to explore built-in search vocabularies to improve retrieval from digital libraries. Our method automatically generates the terms and their semantic relationships representing relevant topics covered in a digital library. We call these generated terms the "concepts", and the generated terms and their semantic relationships we call the "concept space". Additionally, we used a visualization technique to display the concept space and allow users to interact with this space. The automatically generated term set is considered to be more representative of subject area in a corpus than an "externally" imposed thesaurus, and our method has the potential of saving a significant amount of time and labor for those who have been manually creating thesauri as well. Information visualization is an emerging discipline and developed very quickly in the last decade. With growing volumes of documents and associated complexities, information visualization has become increasingly important. Researchers have found information visualization to be an effective way to use and understand information while minimizing a user's cognitive load. Our work was based on an algorithmic approach of concept discovery and association. Concepts are discovered using an algorithm based on an automated thesaurus generation procedure. Subsequently, similarities among terms are computed using the cosine measure, and the associations among terms are established using a method known as max-min distance clustering. The concept space is then visualized in a spring embedding graph, which roughly shows the semantic relationships among concepts in a 2-D visual representation. The semantic space of the visualization is used as a medium for users to retrieve the desired documents. In the remainder of this article, we present our algorithmic approach of concept generation and clustering, followed by description of the visualization technique and interactive interface. The paper ends with key conclusions and discussions on future work.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  15. Darányi, S.; Wittek, P.: Demonstrating conceptual dynamics in an evolving text collection (2013) 0.01
    0.011500487 = product of:
      0.03450146 = sum of:
        0.03450146 = product of:
          0.051752187 = sum of:
            0.025961377 = weight(_text_:online in 1137) [ClassicSimilarity], result of:
              0.025961377 = score(doc=1137,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16765618 = fieldWeight in 1137, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1137)
            0.025790809 = weight(_text_:retrieval in 1137) [ClassicSimilarity], result of:
              0.025790809 = score(doc=1137,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16710453 = fieldWeight in 1137, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1137)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Based on real-world user demands, we demonstrate how animated visualization of evolving text corpora displays the underlying dynamics of semantic content. To interpret the results, one needs a dynamic theory of word meaning. We suggest that conceptual dynamics as the interaction between kinds of intellectual and emotional content and language is key for such a theory. We demonstrate our method by two-way seriation, which is a popular technique to analyze groups of similar instances and their features as well as the connections between the groups themselves. The two-way seriated data may be visualized as a two-dimensional heat map or as a three-dimensional landscape in which color codes or height correspond to the values in the matrix. In this article, we focus on two-way seriation of sparse data in the Reuters-21568 test collection. To achieve a meaningful visualization, we introduce a compactly supported convolution kernel similar to filter kernels used in image reconstruction and geostatistics. This filter populates the high-dimensional sparse space with values that interpolate nearby elements and provides insight into the clustering structure. We also extend two-way seriation to deal with online updates of both the row and column spaces and, combined with the convolution kernel, demonstrate a three-dimensional visualization of dynamics.
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  16. Zhang, J.: TOFIR: A tool of facilitating information retrieval : introduce a visual retrieval model (2001) 0.01
    0.011347376 = product of:
      0.034042127 = sum of:
        0.034042127 = product of:
          0.10212638 = sum of:
            0.10212638 = weight(_text_:retrieval in 7711) [ClassicSimilarity], result of:
              0.10212638 = score(doc=7711,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.6617001 = fieldWeight in 7711, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7711)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
  17. Wilson, M.: Interfaces for information retrieval (2011) 0.01
    0.011347376 = product of:
      0.034042127 = sum of:
        0.034042127 = product of:
          0.10212638 = sum of:
            0.10212638 = weight(_text_:retrieval in 549) [ClassicSimilarity], result of:
              0.10212638 = score(doc=549,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.6617001 = fieldWeight in 549, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.109375 = fieldNorm(doc=549)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Source
    Interactive information seeking, behaviour and retrieval. Eds.: Ruthven, I. u. D. Kelly
  18. Bekavac, B.; Herget, J.; Hierl, S.; Öttl, S.: Visualisierungskomponenten bei webbasierten Suchmaschinen : Methoden, Kriterien und ein Marktüberblick (2007) 0.01
    0.010510692 = product of:
      0.031532075 = sum of:
        0.031532075 = weight(_text_:im in 399) [ClassicSimilarity], result of:
          0.031532075 = score(doc=399,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.2186231 = fieldWeight in 399, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0546875 = fieldNorm(doc=399)
      0.33333334 = coord(1/3)
    
    Abstract
    Bei webbasierten Suchmaschinen werden zunehmend auch Systeme mit Visualisierungskomponenten für die Ergebnisrepräsentation angeboten. Die Ansätze der Visualisierungen unterscheiden sich hierbei in der Zielsetzung und Ausführung deutlich voneinander. Der folgende Beitrag beschreibt die verwendeten Visualisierungsmethoden, systematisiert diese anhand einer Klassifikation, stellt die führenden frei zugänglichen Systeme vor und vergleicht diese anhand der Kriterien aus der Systematisierung. Die typischen Problemfelder werden identifiziert und die wichtigsten Gemeinsamkeiten und Unterschiede der untersuchten Systeme herausgearbeitet. Die Vorstellung zweier innovativer Visualisierungskonzepte im Bereich der Relationenvisualisierung innerhalb von Treffermengen und der Visualisierung von Relationen bei der Suche nach Musik schließen den Beitrag ab.
  19. Hall, P.: Disorderly reasoning in information design (2009) 0.01
    0.010510692 = product of:
      0.031532075 = sum of:
        0.031532075 = weight(_text_:im in 3099) [ClassicSimilarity], result of:
          0.031532075 = score(doc=3099,freq=2.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.2186231 = fieldWeight in 3099, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3099)
      0.33333334 = coord(1/3)
    
    Footnote
    Beitrag im Schwerpunktthema "Perspectives on design: information technologies and creative practices"
  20. Enser, P.: ¬The evolution of visual information retrieval (2009) 0.01
    0.0098271165 = product of:
      0.02948135 = sum of:
        0.02948135 = product of:
          0.08844405 = sum of:
            0.08844405 = weight(_text_:retrieval in 3659) [ClassicSimilarity], result of:
              0.08844405 = score(doc=3659,freq=12.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.5730491 = fieldWeight in 3659, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3659)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper seeks to provide a brief overview of those developments which have taken the theory and practice of image and video retrieval into the digital age. Drawing on a voluminous literature, the context in which visual information retrieval takes place is followed by a consideration of the conceptual and practical challenges posed by the representation and recovery of visual material on the basis of its semantic content. An historical account of research endeavours in content-based retrieval, directed towards the automation of these operations in digital image scenarios, provides the main thrust of the paper. Finally, a look forwards locates visual information retrieval research within the wider context of content-based multimedia retrieval.

Years

Types

  • a 56
  • el 8
  • m 5
  • b 1
  • p 1
  • s 1
  • x 1
  • More… Less…