Search (12 results, page 1 of 1)

  • × theme_ss:"Wissensrepräsentation"
  • × year_i:[1990 TO 2000}
  1. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.02
    0.018943489 = product of:
      0.056830466 = sum of:
        0.056830466 = product of:
          0.0852457 = sum of:
            0.043768454 = weight(_text_:retrieval in 2230) [ClassicSimilarity], result of:
              0.043768454 = score(doc=2230,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.2835858 = fieldWeight in 2230, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
            0.04147724 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
              0.04147724 = score(doc=2230,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23214069 = fieldWeight in 2230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  2. Priss, U.: Faceted knowledge representation (1999) 0.02
    0.018777166 = product of:
      0.056331497 = sum of:
        0.056331497 = product of:
          0.08449724 = sum of:
            0.03610713 = weight(_text_:retrieval in 2654) [ClassicSimilarity], result of:
              0.03610713 = score(doc=2654,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23394634 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
            0.048390117 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.048390117 = score(doc=2654,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.2708308 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2654)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Faceted Knowledge Representation provides a formalism for implementing knowledge systems. The basic notions of faceted knowledge representation are "unit", "relation", "facet" and "interpretation". Units are atomic elements and can be abstract elements or refer to external objects in an application. Relations are sequences or matrices of 0 and 1's (binary matrices). Facets are relational structures that combine units and relations. Each facet represents an aspect or viewpoint of a knowledge system. Interpretations are mappings that can be used to translate between different representations. This paper introduces the basic notions of faceted knowledge representation. The formalism is applied here to an abstract modeling of a faceted thesaurus as used in information retrieval.
    Date
    22. 1.2016 17:30:31
  3. Endres-Niggemeyer, B.: Bessere Information durch Zusammenfassen aus dem WWW (1999) 0.02
    0.016987845 = product of:
      0.050963532 = sum of:
        0.050963532 = weight(_text_:im in 4496) [ClassicSimilarity], result of:
          0.050963532 = score(doc=4496,freq=4.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.35334828 = fieldWeight in 4496, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.0625 = fieldNorm(doc=4496)
      0.33333334 = coord(1/3)
    
    Abstract
    Am Beispiel der Knochenmarktransplantation, eines medizinischen Spezialgebietes, wird im folgenden dargelegt, wie man BenutzerInnen eine großen Teil des Aufwandes bei der Wissensbeschaffung abnehmen kann, indem man Suchergebnisse aus dem Netz fragebezogen zusammenfaßt. Dadurch wird in zeitkritischen Situationen, wie sie in Diagnose und Therapie alltäglich sind, die Aufnahme neuen Wissens ermöglicht. Auf einen Überblick über den Stand des Textzusammenfassens und der Ontologieentwicklung folgt eine Systemskizze, in der die Informationssuche im WWW durch ein kognitiv fundiertes Zusammenfassungssystem ergänzt wird. Dazu wird eine Fach-Ontologie vorgeschlagen, die das benötigte Wissen organisiert und repräsentiert.
  4. Wright, L.W.; Nardini, H.K.G.; Aronson, A.R.; Rindflesch, T.C.: Hierarchical concept indexing of full-text documents in the Unified Medical Language System Information sources Map (1999) 0.02
    0.016649358 = product of:
      0.049948074 = sum of:
        0.049948074 = product of:
          0.07492211 = sum of:
            0.031153653 = weight(_text_:online in 2111) [ClassicSimilarity], result of:
              0.031153653 = score(doc=2111,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20118743 = fieldWeight in 2111, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2111)
            0.043768454 = weight(_text_:retrieval in 2111) [ClassicSimilarity], result of:
              0.043768454 = score(doc=2111,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.2835858 = fieldWeight in 2111, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2111)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Full-text documents are a vital and rapidly growing part of online biomedical information. A single large document can contain as much information as a small database, but normally lacks the tight structure and consistent indexing of a database. Retrieval systems will often miss highly relevant parts of a document if the document as a whole appears irrelevant. Access to full-text information is further complicated by the need to search separately many disparate information resources. This research explores how these problems can be addressed by the combined use of 2 techniques: 1) natural language processing for automatic concept-based indexing of full text, and 2) methods for exploiting the structure and hierarchy of full-text documents. We describe methods for applying these techniques to a large collection of full-text documents drawn from the Health Services / Technology Assessment Text (HSTAT) database at the NLM and examine how this hierarchical concept indexing can assist both document- and source-level retrieval in the context of NLM's Information Source Map project
  5. Priss, U.: Description logic and faceted knowledge representation (1999) 0.02
    0.016094714 = product of:
      0.048284143 = sum of:
        0.048284143 = product of:
          0.072426215 = sum of:
            0.03094897 = weight(_text_:retrieval in 2655) [ClassicSimilarity], result of:
              0.03094897 = score(doc=2655,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
            0.04147724 = weight(_text_:22 in 2655) [ClassicSimilarity], result of:
              0.04147724 = score(doc=2655,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23214069 = fieldWeight in 2655, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2655)
          0.6666667 = coord(2/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The term "facet" was introduced into the field of library classification systems by Ranganathan in the 1930's [Ranganathan, 1962]. A facet is a viewpoint or aspect. In contrast to traditional classification systems, faceted systems are modular in that a domain is analyzed in terms of baseline facets which are then synthesized. In this paper, the term "facet" is used in a broader meaning. Facets can describe different aspects on the same level of abstraction or the same aspect on different levels of abstraction. The notion of facets is related to database views, multicontexts and conceptual scaling in formal concept analysis [Ganter and Wille, 1999], polymorphism in object-oriented design, aspect-oriented programming, views and contexts in description logic and semantic networks. This paper presents a definition of facets in terms of faceted knowledge representation that incorporates the traditional narrower notion of facets and potentially facilitates translation between different knowledge representation formalisms. A goal of this approach is a modular, machine-aided knowledge base design mechanism. A possible application is faceted thesaurus construction for information retrieval and data mining. Reasoning complexity depends on the size of the modules (facets). A more general analysis of complexity will be left for future research.
    Date
    22. 1.2016 17:30:31
  6. Rindflesch, T.C.; Aronson, A.R.: Semantic processing in information retrieval (1993) 0.01
    0.008970889 = product of:
      0.026912667 = sum of:
        0.026912667 = product of:
          0.080738 = sum of:
            0.080738 = weight(_text_:retrieval in 4121) [ClassicSimilarity], result of:
              0.080738 = score(doc=4121,freq=10.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.5231199 = fieldWeight in 4121, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4121)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Intuition suggests that one way to enhance the information retrieval process would be the use of phrases to characterize the contents of text. A number of researchers, however, have noted that phrases alone do not improve retrieval effectiveness. In this paper we briefly review the use of phrases in information retrieval and then suggest extensions to this paradigm using semantic information. We claim that semantic processing, which can be viewed as expressing relations between the concepts represented by phrases, will in fact enhance retrieval effectiveness. The availability of the UMLS® domain model, which we exploit extensively, significantly contributes to the feasibility of this processing.
  7. Wirklichkeit und Wissen : Realismus, Antirealismus und Wirklichkeits-Konzeptionen in Philosophie und Wissenschaften (1992) 0.01
    0.008493923 = product of:
      0.025481766 = sum of:
        0.025481766 = weight(_text_:im in 4606) [ClassicSimilarity], result of:
          0.025481766 = score(doc=4606,freq=4.0), product of:
            0.1442303 = queryWeight, product of:
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.051022716 = queryNorm
            0.17667414 = fieldWeight in 4606, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.8267863 = idf(docFreq=7115, maxDocs=44218)
              0.03125 = fieldNorm(doc=4606)
      0.33333334 = coord(1/3)
    
    Abstract
    Dieser Band ist interdisziplinär - philosophisch, psychologisch, linguistisch, neurobiologisch - Fragen der Wissenschaftsphilosophie gewidmet: Was ist 'Wirklichkeit'? Repräsentiert Wissen Realität? Oder ist 'Wirklichkeit' Konstruktion nach dem Maß menschlichen Geistes? Welche Konzepte von 'Wirklichkeit' und 'Wissen' setzen - im Rahmen welcher wissenschaftlicher Weltbilder - Wissenschaftler in ihren Beschreibungen und Erklärungen von Welt voraus? Gibt es eine Realität, die in ihrer Existenz wie Beschaffenheit unabhängig ist von menschlichen Erfahrungen, Denkformen und Annahmen (Alltagsrealismus)? Existieren die Entitäten wissenschaftlicher Theorien, ob beobachtbar oder nicht, unabhängig von mentalen (phänomenalen, intentionalen) Zuständen (Wissenschaftsrealismus)? Sind - wie dies Physikalismus, Naturalismus und wissenschaftlicher Realismus annehmen - die einzigen existierenden Entitäten physische und physikalisch beschreibbare und können physikalische Gesetze alles erklären, was erklärt werden kann?
    Content
    Enthält die Beiträge: KUTSCHERA, F. von: Der erkenntnistheoretische Realismus; FRANZEN, W.: Idealismus statt Realismus? Realismus plus Skeptizismus!; KREISER, L.: Bruno Bauchs idealistischer Realismus. Votum im Anschluß an Winfried Franzen; DIEDERICH, W.: Probleme und Grenzen des Anti-Realismus; RHEINWALD, R.: Der Schluß auf die beste Erklärung und das Induktionsproblem. Votum zu Werner Diederich; BÜHLER, A.: Antirealismus und Verifikationismus; RHEINWALD, R.: Bemerkungen zu einem bedeutungstheoretischen Argument gegen den Realismus. Votum zu Axel Bühler; ERPENBECK, J.: Psychologie: Gratwanderung zwischen Realismus und Konstruktivismus; ROTH, G. u. H. SCHWEGLER: Kognitive Referenz und Selbstreferentialität des Gehirns. Ein Beitrag zur Klärung des Verhältnisses zwischen Erkenntnistheorie und Hirnforschung; Voten dazu von: H. TETENS, M. BOENKE u. L. LÄSKER; WILDGEN, W.: Semantischer Realismus und Antirealismus in der Sprachtheorie; BECKERMANN, A.: Wie real sind intentionale Zustände? Dennett zwischen Fodor und den Churchlands; ENGEL, P.: Teleosemantics: realistic or anti-realistic? Votum; HOLENSTEIN, E.: Ein Grund, kein Epiphänomenalist zu sein. Votum; SANDKÜHLER, H.J.: Epistemologischer Realismus und die Wirklichkeit des Wissens. Eine Verteidigung des Philosophie des Geistes gegen Naturalismus und Reduktionismus; PÄTZOLD, D.: Intellectus effabilis. Votum zu Hans Jörg Sandkühler; METSCHER, T.: 'Episteme': Wissen als anthropologisches Datum. Grundsätze einer elementaren Epistemologie. Votum zu Hans Jörg Sandkühler; PASTERNACK, G.: Realismus vs Antirealismus. Ein wissenschaftsphilosophisches Explikationsproblem. Votum
  8. Schmitz-Esser, W.: Language of general communication and concept compatibility (1996) 0.01
    0.007680971 = product of:
      0.023042914 = sum of:
        0.023042914 = product of:
          0.06912874 = sum of:
            0.06912874 = weight(_text_:22 in 6089) [ClassicSimilarity], result of:
              0.06912874 = score(doc=6089,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.38690117 = fieldWeight in 6089, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=6089)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Pages
    S.11-22
  9. Giunchiglia, F.; Villafiorita, A.; Walsh, T.: Theories of abstraction (1997) 0.01
    0.006144777 = product of:
      0.01843433 = sum of:
        0.01843433 = product of:
          0.055302992 = sum of:
            0.055302992 = weight(_text_:22 in 4476) [ClassicSimilarity], result of:
              0.055302992 = score(doc=4476,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.30952093 = fieldWeight in 4476, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4476)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    1.10.2018 14:13:22
  10. Noy, N.F.: Knowledge representation for intelligent information retrieval in experimental sciences (1997) 0.01
    0.0051262225 = product of:
      0.015378667 = sum of:
        0.015378667 = product of:
          0.046136 = sum of:
            0.046136 = weight(_text_:retrieval in 694) [ClassicSimilarity], result of:
              0.046136 = score(doc=694,freq=10.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.29892567 = fieldWeight in 694, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=694)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    More and more information is available on-line every day. The greater the amount of on-line information, the greater the demand for tools that process and disseminate this information. Processing electronic information in the form of text and answering users' queries about that information intelligently is one of the great challenges in natural language processing and information retrieval. The research presented in this talk is centered on the latter of these two tasks: intelligent information retrieval. In order for information to be retrieved, it first needs to be formalized in a database or knowledge base. The ontology for this formalization and assumptions it is based on are crucial to successful intelligent information retrieval. We have concentrated our effort on developing an ontology for representing knowledge in the domains of experimental sciences, molecular biology in particular. We show that existing ontological models cannot be readily applied to represent this domain adequately. For example, the fundamental notion of ontology design that every "real" object is defined as an instance of a category seems incompatible with the universe where objects can change their category as a result of experimental procedures. Another important problem is representing complex structures such as DNA, mixtures, populations of molecules, etc., that are very common in molecular biology. We present extensions that need to be made to an ontology to cover these issues: the representation of transformations that change the structure and/or category of their participants, and the component relations and spatial structures of complex objects. We demonstrate examples of how the proposed representations can be used to improve the quality and completeness of answers to user queries; discuss techniques for evaluating ontologies and show a prototype of an Information Retrieval System that we developed.
  11. Fischer, D.H.: From thesauri towards ontologies? (1998) 0.00
    0.0048631616 = product of:
      0.014589485 = sum of:
        0.014589485 = product of:
          0.043768454 = sum of:
            0.043768454 = weight(_text_:retrieval in 2176) [ClassicSimilarity], result of:
              0.043768454 = score(doc=2176,freq=4.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.2835858 = fieldWeight in 2176, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2176)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The ISO 2788 guidelines for monolingual thesauri contain a differentiation of "the hierarchical relationship" into "generic", "partitive", and "instance", which, for purposes of document retrieval, was deemed adequate. However, ontologies, designed as language inventories for a wider scope of knowledge representation, are based on all these and some more logical differentiations. Rereading the ISO 2788 standard and inspecting the published Cyc Upper Ontology, it is argued that the adoption of the document-retrieval definition of subsumption generally prevents the conception or use of a thesaurus as a substructure of an ontology of the new kind as constructed for AI applications. When a thesaurus is used for fact description and inference on fact descriptions, the instance-of relationship too should be reconsidered: It may also link concepts and metaconcepts, and then its distinction from subsumption is needed. The treatment of the instance-of relationship in thesauri, the Cyc Upper Ontology, and WordNet is described from this perspective
  12. Nagao, M.: Knowledge and inference (1990) 0.00
    0.0028656456 = product of:
      0.008596936 = sum of:
        0.008596936 = product of:
          0.025790809 = sum of:
            0.025790809 = weight(_text_:retrieval in 3304) [ClassicSimilarity], result of:
              0.025790809 = score(doc=3304,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16710453 = fieldWeight in 3304, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3304)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval