Search (16 results, page 1 of 1)

  • × author_ss:"Ding, Y."
  1. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.02
    0.02397574 = product of:
      0.059939347 = sum of:
        0.04841807 = weight(_text_:context in 1521) [ClassicSimilarity], result of:
          0.04841807 = score(doc=1521,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 1521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=1521)
        0.011521274 = product of:
          0.03456382 = sum of:
            0.03456382 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.03456382 = score(doc=1521,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Traditional citation analysis has been widely applied to detect patterns of scientific collaboration, map the landscapes of scholarly disciplines, assess the impact of research outputs, and observe knowledge transfer across domains. It is, however, limited, as it assumes all citations are of similar value and weights each equally. Content-based citation analysis (CCA) addresses a citation's value by interpreting each one based on its context at both the syntactic and semantic levels. This paper provides a comprehensive overview of CAA research in terms of its theoretical foundations, methodical approaches, and example applications. In addition, we highlight how increased computational capabilities and publicly available full-text resources have opened this area of research to vast possibilities, which enable deeper citation analysis, more accurate citation prediction, and increased knowledge discovery.
    Date
    22. 8.2014 16:52:04
  2. Klein, M.; Ding, Y.; Fensel, D.; Omelayenko, B.: Ontology management : storing, aligning and maintaining ontologies (2004) 0.02
    0.023455678 = product of:
      0.05863919 = sum of:
        0.032278713 = weight(_text_:context in 4402) [ClassicSimilarity], result of:
          0.032278713 = score(doc=4402,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.18316938 = fieldWeight in 4402, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.03125 = fieldNorm(doc=4402)
        0.02636048 = weight(_text_:system in 4402) [ClassicSimilarity], result of:
          0.02636048 = score(doc=4402,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.19684705 = fieldWeight in 4402, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=4402)
      0.4 = coord(2/5)
    
    Abstract
    Ontologies need to be stored, sometimes aligned and their evolution needs to be managed. All these tasks together are called ontology management. Alignment is a central task in ontology re-use. Re-use of existing ontologies often requires considerable effort: the ontologies either need to be integrated, which means that they are merged into one new ontology, or the ontologies can be kept separate. In both cases, the ontologies have to be aligned, which means that they have to be brought into mutual agreement. The problems that underlie the difficulties in integrating and aligning are the mismatches that may exist between separate ontologies. Ontologies can differ at the language level, which can mean that they are represented in a different syntax, or that the expressiveness of the ontology language is dissimilar. Ontologies also can have mismatches at the model level, for example, in the paradigm, or modelling style. Ontology alignment is very relevant in a Semantic Web context. The Semantic Web will provide us with a lot of freely accessible domain specific ontologies. To form a real web of semantics - which will allow computers to combine and infer implicit knowledge - those separate ontologies should be aligned and linked.
    Support for evolving ontologies is required in almost all situations where ontologies are used in real-world applications. In those cases, ontologies are often developed by several persons and will continue to evolve over time, because of changes in the real world, adaptations to different tasks, or alignments to other ontologies. To prevent that such changes will invalidate existing usage, a change management methodology is needed. This involves advanced versioning methods for the development and the maintenance of ontologies, but also configuration management, that takes care of the identification, relations and interpretation of ontology versions. All these aspects come together in integrated ontology library systems. When the number of different ontologies is increasing, the task of storing, maintaining and re-organizing them to secure the successful re-use of ontologies is challenging. Ontology library systems can help in the grouping and reorganizing ontologies for further re-use, integration, maintenance, mapping and versioning. Basically, a library system offers various functions for managing, adapting and standardizing groups of ontologies. Such integrated systems are a requirement for the Semantic Web to grow further and scale up. In this chapter, we describe a number of results with respect to the above mentioned areas. We start with a description of the alignment task and show a meta-ontology that is developed to specify the mappings. Then, we discuss the problems that are caused by evolving ontologies and describe two important elements of a change management methodology. Finally, in Section 4.4 we survey existing library systems and formulate a wish-list of features of an ontology library system.
  3. Ding, Y.; Yan, E.; Frazho, A.; Caverlee, J.: PageRank for ranking authors in co-citation networks (2009) 0.02
    0.015222736 = product of:
      0.07611368 = sum of:
        0.07611368 = weight(_text_:index in 3161) [ClassicSimilarity], result of:
          0.07611368 = score(doc=3161,freq=4.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.40966535 = fieldWeight in 3161, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=3161)
      0.2 = coord(1/5)
    
    Abstract
    This paper studies how varied damping factors in the PageRank algorithm influence the ranking of authors and proposes weighted PageRank algorithms. We selected the 108 most highly cited authors in the information retrieval (IR) area from the 1970s to 2008 to form the author co-citation network. We calculated the ranks of these 108 authors based on PageRank with the damping factor ranging from 0.05 to 0.95. In order to test the relationship between different measures, we compared PageRank and weighted PageRank results with the citation ranking, h-index, and centrality measures. We found that in our author co-citation network, citation rank is highly correlated with PageRank with different damping factors and also with different weighted PageRank algorithms; citation rank and PageRank are not significantly correlated with centrality measures; and h-index rank does not significantly correlate with centrality measures but does significantly correlate with other measures. The key factors that have impact on the PageRank of authors in the author co-citation network are being co-cited with important authors.
  4. Yan, E.; Ding, Y.: Discovering author impact : a PageRank perspective (2011) 0.01
    0.014352133 = product of:
      0.07176066 = sum of:
        0.07176066 = weight(_text_:index in 2704) [ClassicSimilarity], result of:
          0.07176066 = score(doc=2704,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.3862362 = fieldWeight in 2704, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0625 = fieldNorm(doc=2704)
      0.2 = coord(1/5)
    
    Abstract
    This article provides an alternative perspective for measuring author impact by applying PageRank algorithm to a coauthorship network. A weighted PageRank algorithm considering citation and coauthorship network topology is proposed. We test this algorithm under different damping factors by evaluating author impact in the informetrics research community. In addition, we also compare this weighted PageRank with the h-index, citation, and program committee (PC) membership of the International Society for Scientometrics and Informetrics (ISSI) conferences. Findings show that this weighted PageRank algorithm provides reliable results in measuring author impact.
  5. He, B.; Ding, Y.; Ni, C.: Mining enriched contextual information of scientific collaboration : a meso perspective (2011) 0.01
    0.013977095 = product of:
      0.06988547 = sum of:
        0.06988547 = weight(_text_:context in 4444) [ClassicSimilarity], result of:
          0.06988547 = score(doc=4444,freq=6.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.39657336 = fieldWeight in 4444, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4444)
      0.2 = coord(1/5)
    
    Abstract
    Studying scientific collaboration using coauthorship networks has attracted much attention in recent years. How and in what context two authors collaborate remain among the major questions. Previous studies, however, have focused on either exploring the global topology of coauthorship networks (macro perspective) or ranking the impact of individual authors (micro perspective). Neither of them has provided information on the context of the collaboration between two specific authors, which may potentially imply rich socioeconomic, disciplinary, and institutional information on collaboration. Different from the macro perspective and micro perspective, this article proposes a novel method (meso perspective) to analyze scientific collaboration, in which a contextual subgraph is extracted as the unit of analysis. A contextual subgraph is defined as a small subgraph of a large-scale coauthorship network that captures relationship and context between two coauthors. This method is applied to the field of library and information science. Topological properties of all the subgraphs in four time spans are investigated, including size, average degree, clustering coefficient, and network centralization. Results show that contextual subgprahs capture useful contextual information on two authors' collaboration.
  6. Ding, Y.: Topic-based PageRank on author cocitation networks (2011) 0.01
    0.0107641 = product of:
      0.0538205 = sum of:
        0.0538205 = weight(_text_:index in 4348) [ClassicSimilarity], result of:
          0.0538205 = score(doc=4348,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.28967714 = fieldWeight in 4348, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=4348)
      0.2 = coord(1/5)
    
    Abstract
    Ranking authors is vital for identifying a researcher's impact and standing within a scientific field. There are many different ranking methods (e.g., citations, publications, h-index, PageRank, and weighted PageRank), but most of them are topic-independent. This paper proposes topic-dependent ranks based on the combination of a topic model and a weighted PageRank algorithm. The author-conference-topic (ACT) model was used to extract topic distribution of individual authors. Two ways for combining the ACT model with the PageRank algorithm are proposed: simple combination (I_PR) or using a topic distribution as a weighted vector for PageRank (PR_t). Information retrieval was chosen as the test field and representative authors for different topics at different time phases were identified. Principal component analysis (PCA) was applied to analyze the ranking difference between I_PR and PR_t.
  7. Zhang, G.; Ding, Y.; Milojevic, S.: Citation content analysis (CCA) : a framework for syntactic and semantic analysis of citation content (2013) 0.01
    0.009683615 = product of:
      0.04841807 = sum of:
        0.04841807 = weight(_text_:context in 975) [ClassicSimilarity], result of:
          0.04841807 = score(doc=975,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 975, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=975)
      0.2 = coord(1/5)
    
    Abstract
    This study proposes a new framework for citation content analysis (CCA), for syntactic and semantic analysis of citation content that can be used to better analyze the rich sociocultural context of research behavior. This framework could be considered the next generation of citation analysis. The authors briefly review the history and features of content analysis in traditional social sciences and its previous application in library and information science (LIS). Based on critical discussion of the theoretical necessity of a new method as well as the limits of citation analysis, the nature and purposes of CCA are discussed, and potential procedures to conduct CCA, including principles to identify the reference scope, a two-dimensional (citing and cited) and two-module (syntactic and semantic) codebook, are provided and described. Future work and implications are also suggested.
  8. Zhai, Y; Ding, Y.; Wang, F.: Measuring the diffusion of an innovation : a citation analysis (2018) 0.01
    0.009683615 = product of:
      0.04841807 = sum of:
        0.04841807 = weight(_text_:context in 4116) [ClassicSimilarity], result of:
          0.04841807 = score(doc=4116,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 4116, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=4116)
      0.2 = coord(1/5)
    
    Abstract
    Innovations transform our research traditions and become the driving force to advance individual, group, and social creativity. Meanwhile, interdisciplinary research is increasingly being promoted as a route to advance the complex challenges we face as a society. In this paper, we use Latent Dirichlet Allocation (LDA) citation as a proxy context for the diffusion of an innovation. With an analysis of topic evolution, we divide the diffusion process into five stages: testing and evaluation, implementation, improvement, extending, and fading. Through a correlation analysis of topic and subject, we show the application of LDA in different subjects. We also reveal the cross-boundary diffusion between different subjects based on the analysis of the interdisciplinary studies. The results show that as LDA is transferred into different areas, the adoption of each subject is relatively adjacent to those with similar research interests. Our findings further support researchers' understanding of the impact formation of innovation.
  9. Li, D.; Wang, Y.; Madden, A.; Ding, Y.; Sun, G.G.; Zhang, N.; Zhou, E.: Analyzing stock market trends using social media user moods and social influence (2019) 0.01
    0.008970084 = product of:
      0.044850416 = sum of:
        0.044850416 = weight(_text_:index in 5362) [ClassicSimilarity], result of:
          0.044850416 = score(doc=5362,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.24139762 = fieldWeight in 5362, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5362)
      0.2 = coord(1/5)
    
    Abstract
    Information from microblogs is gaining increasing attention from researchers interested in analyzing fluctuations in stock markets. Behavioral financial theory draws on social psychology to explain some of the irrational behaviors associated with financial decisions to help explain some of the fluctuations. In this study we argue that social media users who demonstrate an interest in finance can offer insights into ways in which irrational behaviors may affect a stock market. To test this, we analyzed all the data collected over a 3-month period in 2011 from Tencent Weibo (one of the largest microblogging websites in China). We designed a social influence (SI)-based Tencent finance-related moods model to simulate investors' irrational behaviors, and designed a Tencent Moods-based Stock Trend Analysis (TM_STA) model to detect correlations between Tencent moods and the Hushen-300 index (one of the most important financial indexes in China). Experimental results show that the proposed method can help explain the data fluctuation. The findings support the existing behavioral financial theory, and can help to understand short-term rises and falls in a stock market. We use behavioral financial theory to further explain our findings, and to propose a trading model to verify the proposed model.
  10. Xu, H.; Bu, Y.; Liu, M.; Zhang, C.; Sun, M.; Zhang, Y.; Meyer, E.; Salas, E.; Ding, Y.: Team power dynamics and team impact : new perspectives on scientific collaboration using career age as a proxy for team power (2022) 0.01
    0.008970084 = product of:
      0.044850416 = sum of:
        0.044850416 = weight(_text_:index in 663) [ClassicSimilarity], result of:
          0.044850416 = score(doc=663,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.24139762 = fieldWeight in 663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=663)
      0.2 = coord(1/5)
    
    Abstract
    Power dynamics influence every aspect of scientific collaboration. Team power dynamics can be measured by team power level and team power hierarchy. Team power level is conceptualized as the average level of the possession of resources, expertise, or decision-making authorities of a team. Team power hierarchy represents the vertical differences of the possessions of resources in a team. In Science of Science, few studies have looked at scientific collaboration from the perspective of team power dynamics. This research examines how team power dynamics affect team impact to fill the research gap. In this research, all coauthors of one publication are treated as one team. Team power level and team power hierarchy of one team are measured by the mean and Gini index of career age of coauthors in this team. Team impact is quantified by citations of a paper authored by this team. By analyzing over 7.7 million teams from Science (e.g., Computer Science, Physics), Social Sciences (e.g., Sociology, Library & Information Science), and Arts & Humanities (e.g., Art), we find that flat team structure is associated with higher team impact, especially when teams have high team power level. These findings have been repeated in all five disciplines except Art, and are consistent in various types of teams from Computer Science including teams from industry or academia, teams with different gender groups, teams with geographical contrast, and teams with distinct size.
  11. Yan, E.; Ding, Y.; Sugimoto, C.R.: P-Rank: an indicator measuring prestige in heterogeneous scholarly networks (2011) 0.01
    0.0055919024 = product of:
      0.027959513 = sum of:
        0.027959513 = weight(_text_:system in 4349) [ClassicSimilarity], result of:
          0.027959513 = score(doc=4349,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 4349, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=4349)
      0.2 = coord(1/5)
    
    Abstract
    Ranking scientific productivity and prestige are often limited to homogeneous networks. These networks are unable to account for the multiple factors that constitute the scholarly communication and reward system. This study proposes a new informetric indicator, P-Rank, for measuring prestige in heterogeneous scholarly networks containing articles, authors, and journals. P-Rank differentiates the weight of each citation based on its citing papers, citing journals, and citing authors. Articles from 16 representative library and information science journals are selected as the dataset. Principle Component Analysis is conducted to examine the relationship between P-Rank and other bibliometric indicators. We also compare the correlation and rank variances between citation counts and P-Rank scores. This work provides a new approach to examining prestige in scholarly communication networks in a more comprehensive and nuanced way.
  12. Ding, Y.: Scholarly communication and bibliometrics : Part 1: The scholarly communication model: literature review (1998) 0.00
    0.003875286 = product of:
      0.01937643 = sum of:
        0.01937643 = product of:
          0.05812929 = sum of:
            0.05812929 = weight(_text_:29 in 3995) [ClassicSimilarity], result of:
              0.05812929 = score(doc=3995,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.38865322 = fieldWeight in 3995, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3995)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Source
    International forum on information and documentation. 23(1998) no.2, S.20-29
  13. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.00
    0.0026882975 = product of:
      0.013441487 = sum of:
        0.013441487 = product of:
          0.04032446 = sum of:
            0.04032446 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.04032446 = score(doc=4188,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    22. 1.2011 13:02:21
  14. Song, M.; Kim, S.Y.; Zhang, G.; Ding, Y.; Chambers, T.: Productivity and influence in bioinformatics : a bibliometric analysis using PubMed central (2014) 0.00
    0.0023251716 = product of:
      0.011625858 = sum of:
        0.011625858 = product of:
          0.034877572 = sum of:
            0.034877572 = weight(_text_:29 in 1202) [ClassicSimilarity], result of:
              0.034877572 = score(doc=1202,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.23319192 = fieldWeight in 1202, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    29. 1.2014 16:40:41
  15. Min, C.; Ding, Y.; Li, J.; Bu, Y.; Pei, L.; Sun, J.: Innovation or imitation : the diffusion of citations (2018) 0.00
    0.001937643 = product of:
      0.009688215 = sum of:
        0.009688215 = product of:
          0.029064644 = sum of:
            0.029064644 = weight(_text_:29 in 4445) [ClassicSimilarity], result of:
              0.029064644 = score(doc=4445,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19432661 = fieldWeight in 4445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4445)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    29. 9.2018 13:24:10
  16. Liu, M.; Bu, Y.; Chen, C.; Xu, J.; Li, D.; Leng, Y.; Freeman, R.B.; Meyer, E.T.; Yoon, W.; Sung, M.; Jeong, M.; Lee, J.; Kang, J.; Min, C.; Zhai, Y.; Song, M.; Ding, Y.: Pandemics are catalysts of scientific novelty : evidence from COVID-19 (2022) 0.00
    0.001937643 = product of:
      0.009688215 = sum of:
        0.009688215 = product of:
          0.029064644 = sum of:
            0.029064644 = weight(_text_:29 in 633) [ClassicSimilarity], result of:
              0.029064644 = score(doc=633,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19432661 = fieldWeight in 633, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=633)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Abstract
    Scientific novelty drives the efforts to invent new vaccines and solutions during the pandemic. First-time collaboration and international collaboration are two pivotal channels to expand teams' search activities for a broader scope of resources required to address the global challenge, which might facilitate the generation of novel ideas. Our analysis of 98,981 coronavirus papers suggests that scientific novelty measured by the BioBERT model that is pretrained on 29 million PubMed articles, and first-time collaboration increased after the outbreak of COVID-19, and international collaboration witnessed a sudden decrease. During COVID-19, papers with more first-time collaboration were found to be more novel and international collaboration did not hamper novelty as it had done in the normal periods. The findings suggest the necessity of reaching out for distant resources and the importance of maintaining a collaborative scientific community beyond nationalism during a pandemic.