Search (2 results, page 1 of 1)

  • × author_ss:"Zhang, C."
  • × author_ss:"Zhang, Y."
  1. Zhang, Y.; Zhang, C.; Li, J.: Joint modeling of characters, words, and conversation contexts for microblog keyphrase extraction (2020) 0.02
    0.016139356 = product of:
      0.080696784 = sum of:
        0.080696784 = weight(_text_:context in 5816) [ClassicSimilarity], result of:
          0.080696784 = score(doc=5816,freq=8.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.45792344 = fieldWeight in 5816, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5816)
      0.2 = coord(1/5)
    
    Abstract
    Millions of messages are produced on microblog platforms every day, leading to the pressing need for automatic identification of key points from the massive texts. To absorb salient content from the vast bulk of microblog posts, this article focuses on the task of microblog keyphrase extraction. In previous work, most efforts treat messages as independent documents and might suffer from the data sparsity problem exhibited in short and informal microblog posts. On the contrary, we propose to enrich contexts via exploiting conversations initialized by target posts and formed by their replies, which are generally centered around relevant topics to the target posts and therefore helpful for keyphrase identification. Concretely, we present a neural keyphrase extraction framework, which has 2 modules: a conversation context encoder and a keyphrase tagger. The conversation context encoder captures indicative representation from their conversation contexts and feeds the representation into the keyphrase tagger, and the keyphrase tagger extracts salient words from target posts. The 2 modules were trained jointly to optimize the conversation context encoding and keyphrase extraction processes. In the conversation context encoder, we leverage hierarchical structures to capture the word-level indicative representation and message-level indicative representation hierarchically. In both of the modules, we apply character-level representations, which enables the model to explore morphological features and deal with the out-of-vocabulary problem caused by the informal language style of microblog messages. Extensive comparison results on real-life data sets indicate that our model outperforms state-of-the-art models from previous studies.
  2. Xu, H.; Bu, Y.; Liu, M.; Zhang, C.; Sun, M.; Zhang, Y.; Meyer, E.; Salas, E.; Ding, Y.: Team power dynamics and team impact : new perspectives on scientific collaboration using career age as a proxy for team power (2022) 0.01
    0.008970084 = product of:
      0.044850416 = sum of:
        0.044850416 = weight(_text_:index in 663) [ClassicSimilarity], result of:
          0.044850416 = score(doc=663,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.24139762 = fieldWeight in 663, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=663)
      0.2 = coord(1/5)
    
    Abstract
    Power dynamics influence every aspect of scientific collaboration. Team power dynamics can be measured by team power level and team power hierarchy. Team power level is conceptualized as the average level of the possession of resources, expertise, or decision-making authorities of a team. Team power hierarchy represents the vertical differences of the possessions of resources in a team. In Science of Science, few studies have looked at scientific collaboration from the perspective of team power dynamics. This research examines how team power dynamics affect team impact to fill the research gap. In this research, all coauthors of one publication are treated as one team. Team power level and team power hierarchy of one team are measured by the mean and Gini index of career age of coauthors in this team. Team impact is quantified by citations of a paper authored by this team. By analyzing over 7.7 million teams from Science (e.g., Computer Science, Physics), Social Sciences (e.g., Sociology, Library & Information Science), and Arts & Humanities (e.g., Art), we find that flat team structure is associated with higher team impact, especially when teams have high team power level. These findings have been repeated in all five disciplines except Art, and are consistent in various types of teams from Computer Science including teams from industry or academia, teams with different gender groups, teams with geographical contrast, and teams with distinct size.