Search (6 results, page 1 of 1)

  • × subject_ss:"User interfaces (Computer systems)"
  1. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.03
    0.03337159 = product of:
      0.08342897 = sum of:
        0.044850416 = weight(_text_:index in 1397) [ClassicSimilarity], result of:
          0.044850416 = score(doc=1397,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.24139762 = fieldWeight in 1397, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1397)
        0.038578555 = product of:
          0.057867832 = sum of:
            0.029064644 = weight(_text_:29 in 1397) [ClassicSimilarity], result of:
              0.029064644 = score(doc=1397,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19432661 = fieldWeight in 1397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1397)
            0.028803186 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
              0.028803186 = score(doc=1397,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 1397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1397)
          0.6666667 = coord(2/3)
      0.4 = coord(2/5)
    
    Content
    From the contents:.- Basics of screen design.- Navigation and orientation.- Information.- Screen layout.Interaction.- Motivation.- Innovative prospects.- Appendix.Glossary.- Literature.- Index
    Date
    22. 3.2008 14:29:25
  2. Crestani, F.; Mizzaro, S.; Scagnetto, I,: Mobile information retrieval (2017) 0.03
    0.026699785 = product of:
      0.06674946 = sum of:
        0.057061244 = weight(_text_:context in 4469) [ClassicSimilarity], result of:
          0.057061244 = score(doc=4469,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32380077 = fieldWeight in 4469, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4469)
        0.009688215 = product of:
          0.029064644 = sum of:
            0.029064644 = weight(_text_:29 in 4469) [ClassicSimilarity], result of:
              0.029064644 = score(doc=4469,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19432661 = fieldWeight in 4469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4469)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    This book offers a helpful starting point in the scattered, rich, and complex body of literature on Mobile Information Retrieval (Mobile IR), reviewing more than 200 papers in nine chapters. Highlighting the most interesting and influential contributions that have appeared in recent years, it particularly focuses on both user interaction and techniques for the perception and use of context, which, taken together, shape much of today's research on Mobile IR. The book starts by addressing the differences between IR and Mobile IR, while also reviewing the foundations of Mobile IR research. It then examines the different kinds of documents, users, and information needs that can be found in Mobile IR, and which set it apart from standard IR. Next, it discusses the two important issues of user interfaces and context-awareness. In closing, it covers issues related to the evaluation of Mobile IR applications. Overall, the book offers a valuable tool, helping new and veteran researchers alike to navigate this exciting and highly dynamic area of research.
    Date
    29. 9.2018 13:24:44
  3. Semantic keyword-based search on structured data sources : First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers (2016) 0.02
    0.01725643 = product of:
      0.043141074 = sum of:
        0.032278713 = weight(_text_:context in 2753) [ClassicSimilarity], result of:
          0.032278713 = score(doc=2753,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.18316938 = fieldWeight in 2753, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.03125 = fieldNorm(doc=2753)
        0.010862362 = product of:
          0.032587085 = sum of:
            0.032587085 = weight(_text_:22 in 2753) [ClassicSimilarity], result of:
              0.032587085 = score(doc=2753,freq=4.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.21886435 = fieldWeight in 2753, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2753)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    This book constitutes the thoroughly refereed post-conference proceedings of the First COST Action IC1302 International KEYSTONE Conference on semantic Keyword-based Search on Structured Data Sources, IKC 2015, held in Coimbra, Portugal, in September 2015. The 13 revised full papers, 3 revised short papers, and 2 invited papers were carefully reviewed and selected from 22 initial submissions. The paper topics cover techniques for keyword search, semantic data management, social Web and social media, information retrieval, benchmarking for search on big data.
    Content
    Inhalt: Professional Collaborative Information Seeking: On Traceability and Creative Sensemaking / Nürnberger, Andreas (et al.) - Recommending Web Pages Using Item-Based Collaborative Filtering Approaches / Cadegnani, Sara (et al.) - Processing Keyword Queries Under Access Limitations / Calì, Andrea (et al.) - Balanced Large Scale Knowledge Matching Using LSH Forest / Cochez, Michael (et al.) - Improving css-KNN Classification Performance by Shifts in Training Data / Draszawka, Karol (et al.) - Classification Using Various Machine Learning Methods and Combinations of Key-Phrases and Visual Features / HaCohen-Kerner, Yaakov (et al.) - Mining Workflow Repositories for Improving Fragments Reuse / Harmassi, Mariem (et al.) - AgileDBLP: A Search-Based Mobile Application for Structured Digital Libraries / Ifrim, Claudia (et al.) - Support of Part-Whole Relations in Query Answering / Kozikowski, Piotr (et al.) - Key-Phrases as Means to Estimate Birth and Death Years of Jewish Text Authors / Mughaz, Dror (et al.) - Visualization of Uncertainty in Tag Clouds / Platis, Nikos (et al.) - Multimodal Image Retrieval Based on Keywords and Low-Level Image Features / Pobar, Miran (et al.) - Toward Optimized Multimodal Concept Indexing / Rekabsaz, Navid (et al.) - Semantic URL Analytics to Support Efficient Annotation of Large Scale Web Archives / Souza, Tarcisio (et al.) - Indexing of Textual Databases Based on Lexical Resources: A Case Study for Serbian / Stankovic, Ranka (et al.) - Domain-Specific Modeling: Towards a Food and Drink Gazetteer / Tagarev, Andrey (et al.) - Analysing Entity Context in Multilingual Wikipedia to Support Entity-Centric Retrieval Applications / Zhou, Yiwei (et al.)
    Date
    1. 2.2016 18:25:22
  4. Gossen, T.: Search engines for children : search user interfaces and information-seeking behaviour (2016) 0.01
    0.009212184 = product of:
      0.02303046 = sum of:
        0.016309716 = weight(_text_:system in 2752) [ClassicSimilarity], result of:
          0.016309716 = score(doc=2752,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.1217929 = fieldWeight in 2752, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2752)
        0.0067207436 = product of:
          0.02016223 = sum of:
            0.02016223 = weight(_text_:22 in 2752) [ClassicSimilarity], result of:
              0.02016223 = score(doc=2752,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.1354154 = fieldWeight in 2752, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2752)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Content
    Inhalt: Acknowledgments; Abstract; Zusammenfassung; Contents; List of Figures; List of Tables; List of Acronyms; Chapter 1 Introduction ; 1.1 Research Questions; 1.2 Thesis Outline; Part I Fundamentals ; Chapter 2 Information Retrieval for Young Users ; 2.1 Basics of Information Retrieval; 2.1.1 Architecture of an IR System; 2.1.2 Relevance Ranking; 2.1.3 Search User Interfaces; 2.1.4 Targeted Search Engines; 2.2 Aspects of Child Development Relevant for Information Retrieval Tasks; 2.2.1 Human Cognitive Development; 2.2.2 Information Processing Theory; 2.2.3 Psychosocial Development 2.3 User Studies and Evaluation2.3.1 Methods in User Studies; 2.3.2 Types of Evaluation; 2.3.3 Evaluation with Children; 2.4 Discussion; Chapter 3 State of the Art ; 3.1 Children's Information-Seeking Behaviour; 3.1.1 Querying Behaviour; 3.1.2 Search Strategy; 3.1.3 Navigation Style; 3.1.4 User Interface; 3.1.5 Relevance Judgement; 3.2 Existing Algorithms and User Interface Concepts for Children; 3.2.1 Query; 3.2.2 Content; 3.2.3 Ranking; 3.2.4 Search Result Visualisation; 3.3 Existing Information Retrieval Systems for Children; 3.3.1 Digital Book Libraries; 3.3.2 Web Search Engines 3.4 Summary and DiscussionPart II Studying Open Issues ; Chapter 4 Usability of Existing Search Engines for Young Users ; 4.1 Assessment Criteria; 4.1.1 Criteria for Matching the Motor Skills; 4.1.2 Criteria for Matching the Cognitive Skills; 4.2 Results; 4.2.1 Conformance with Motor Skills; 4.2.2 Conformance with the Cognitive Skills; 4.2.3 Presentation of Search Results; 4.2.4 Browsing versus Searching; 4.2.5 Navigational Style; 4.3 Summary and Discussion; Chapter 5 Large-scale Analysis of Children's Queries and Search Interactions; 5.1 Dataset; 5.2 Results; 5.3 Summary and Discussion Chapter 6 Differences in Usability and Perception of Targeted Web Search Engines between Children and Adults 6.1 Related Work; 6.2 User Study; 6.3 Study Results; 6.4 Summary and Discussion; Part III Tackling the Challenges ; Chapter 7 Search User Interface Design for Children ; 7.1 Conceptual Challenges and Possible Solutions; 7.2 Knowledge Journey Design; 7.3 Evaluation; 7.3.1 Study Design; 7.3.2 Study Results; 7.4 Voice-Controlled Search: Initial Study; 7.4.1 User Study; 7.5 Summary and Discussion; Chapter 8 Addressing User Diversity ; 8.1 Evolving Search User Interface 8.1.1 Mapping Function8.1.2 Evolving Skills; 8.1.3 Detection of User Abilities; 8.1.4 Design Concepts; 8.2 Adaptation of a Search User Interface towards User Needs; 8.2.1 Design & Implementation; 8.2.2 Search Input; 8.2.3 Result Output; 8.2.4 General Properties; 8.2.5 Configuration and Further Details; 8.3 Evaluation; 8.3.1 Study Design; 8.3.2 Study Results; 8.3.3 Preferred UI Settings; 8.3.4 User satisfaction; 8.4 Knowledge Journey Exhibit; 8.4.1 Hardware; 8.4.2 Frontend; 8.4.3 Backend; 8.5 Summary and Discussion; Chapter 9 Supporting Visual Searchers in Processing Search Results 9.1 Related Work
    Date
    1. 2.2016 18:25:22
  5. Next generation search engines : advanced models for information retrieval (2012) 0.01
    0.0057061245 = product of:
      0.028530622 = sum of:
        0.028530622 = weight(_text_:context in 357) [ClassicSimilarity], result of:
          0.028530622 = score(doc=357,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.16190039 = fieldWeight in 357, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.01953125 = fieldNorm(doc=357)
      0.2 = coord(1/5)
    
    Abstract
    Recent technological progress in computer science, Web technologies, and constantly evolving information available on the Internet has drastically changed the landscape of search and access to information. Web search has significantly evolved in recent years. In the beginning, web search engines such as Google and Yahoo! were only providing search service over text documents. Aggregated search was one of the first steps to go beyond text search, and was the beginning of a new era for information seeking and retrieval. These days, new web search engines support aggregated search over a number of vertices, and blend different types of documents (e.g., images, videos) in their search results. New search engines employ advanced techniques involving machine learning, computational linguistics and psychology, user interaction and modeling, information visualization, Web engineering, artificial intelligence, distributed systems, social networks, statistical analysis, semantic analysis, and technologies over query sessions. Documents no longer exist on their own; they are connected to other documents, they are associated with users and their position in a social network, and they can be mapped onto a variety of ontologies. Similarly, retrieval tasks have become more interactive and are solidly embedded in a user's geospatial, social, and historical context. It is conjectured that new breakthroughs in information retrieval will not come from smarter algorithms that better exploit existing information sources, but from new retrieval algorithms that can intelligently use and combine new sources of contextual metadata.
    Content
    Vert, S.: Extensions of Web browsers useful to knowledge workers. Chen, L.-C.: Next generation search engine for the result clustering technology. Biskri, I., L. Rompré: Using association rules for query reformulation. Habernal, I., M. Konopík u. O. Rohlík: Question answering. Grau, B.: Finding answers to questions, in text collections or Web, in open domain or specialty domains. Berri, J., R. Benlamri: Context-aware mobile search engine. Bouidghaghen, O., L. Tamine: Spatio-temporal based personalization for mobile search. Chaudiron, S., M. Ihadjadene: Studying Web search engines from a user perspective: key concepts and main approaches. Karaman, F.: Artificial intelligence enabled search engines (AIESE) and the implications. Lewandowski, D.: A framework for evaluating the retrieval effectiveness of search engines.
  6. Lazar, J.: Web usability : a user-centered design approach (2006) 0.00
    0.0032278714 = product of:
      0.016139356 = sum of:
        0.016139356 = weight(_text_:context in 340) [ClassicSimilarity], result of:
          0.016139356 = score(doc=340,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.09158469 = fieldWeight in 340, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.015625 = fieldNorm(doc=340)
      0.2 = coord(1/5)
    
    Footnote
    Rez. in: JASIST 58(2007) no.7, S.1066-1067 (X. Zhu u. J. Liao): "The user, without whom any product or service would be nothing, plays a very important role during the whole life cycle of products or services. The user's involvement should be from the very beginning, not just after products or services are ready to work. According to ISO 9241-11: 1998, Part 11, Usability refers to "the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of user." As an academic topic of human-computer interaction, Web usability has been studied widely for a long time. This classroom-oriented book, bridging academia and the educational community, talks about Web usability in a student-friendly fashion. It outlines not only the methodology of user-centered Web site design but also details the methods to implement at every stage of the methodology. That is, the book presents the user-centered Web-design approach from both macrocosm and microcosm points of view, which makes it both recapitulative and practical. The most important key word in Web Usability is "user-centered," which means Web developers should not substitute their own personal preferences for the users' needs. The book classifies Web sites into five types: E-commerce, informational, entertainment, community, and intranet. Since the methods used during Web development differ somewhat depending on the type of Web site, it is necessary to have a classification in advance. With Figure 1.3 on p. 17, the book explains the whole user-centered Webdevelopment life cycle (called "methodology" in this book review), which provides a clear path for Web development that is easy to understand, remember, and perform. Since all the following chapters are based on the methodology, a clear presentation of it is paramount. The table on p. 93 summarizes concisely all types of methods for requirements gathering and their advantages and disadvantages. According to this table, appropriate methods can be easily chosen for different Web site development projects. As the author remarked, "requirements gathering is central to the concept of user-centered design," (p. 98) and "one of the hallmarks of user-centered design is usability testing" (p. 205). Stage 2 (collect user requirements) and Stage 5 (perform usability testing) of the user-centered Web-development life cycle are the two stages with the most user involvement: however, this does not mean that all other stages are user unrelated. For example, in Stage 4 (create and modify physical design), frame is not suggested to be used just because most users are unfamiliar with the concept of frame (p. 201). Note that frequently there are several rounds of usability testing to be performed in the four case studies, and some of them are performed before the physical-design stage or even the conceptual-design stage, which embodies the idea of an iterative design process.