Search (13 results, page 1 of 1)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  • × type_ss:"m"
  1. Classification research for knowledge representation and organization : Proc. of the 5th Int. Study Conf. on Classification Research, Toronto, Canada, 24.-28.6.1991 (1992) 0.05
    0.054135233 = product of:
      0.09022538 = sum of:
        0.024209036 = weight(_text_:context in 2072) [ClassicSimilarity], result of:
          0.024209036 = score(doc=2072,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.13737704 = fieldWeight in 2072, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
        0.03805684 = weight(_text_:index in 2072) [ClassicSimilarity], result of:
          0.03805684 = score(doc=2072,freq=4.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.20483267 = fieldWeight in 2072, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
        0.027959513 = weight(_text_:system in 2072) [ClassicSimilarity], result of:
          0.027959513 = score(doc=2072,freq=8.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 2072, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2072)
      0.6 = coord(3/5)
    
    Content
    Enthält die Beiträge: SVENONIUS, E.: Classification: prospects, problems, and possibilities; BEALL, J.: Editing the Dewey Decimal Classification online: the evolution of the DDC database; BEGHTOL, C.: Toward a theory of fiction analysis for information storage and retrieval; CRAVEN, T.C.: Concept relation structures and their graphic display; FUGMANN, R.: Illusory goals in information science research; GILCHRIST, A.: UDC: the 1990's and beyond; GREEN, R.: The expression of syntagmatic relationships in indexing: are frame-based index languages the answer?; HUMPHREY, S.M.: Use and management of classification systems for knowledge-based indexing; MIKSA, F.L.: The concept of the universe of knowledge and the purpose of LIS classification; SCOTT, M. u. A.F. FONSECA: Methodology for functional appraisal of records and creation of a functional thesaurus; ALBRECHTSEN, H.: PRESS: a thesaurus-based information system for software reuse; AMAESHI, B.: A preliminary AAT compatible African art thesaurus; CHATTERJEE, A.: Structures of Indian classification systems of the pre-Ranganathan era and their impact on the Colon Classification; COCHRANE, P.A.: Indexing and searching thesauri, the Janus or Proteus of information retrieval; CRAVEN, T.C.: A general versus a special algorithm in the graphic display of thesauri; DAHLBERG, I.: The basis of a new universal classification system seen from a philosophy of science point of view: DRABENSTOTT, K.M., RIESTER, L.C. u. B.A.DEDE: Shelflisting using expert systems; FIDEL, R.: Thesaurus requirements for an intermediary expert system; GREEN, R.: Insights into classification from the cognitive sciences: ramifications for index languages; GROLIER, E. de: Towards a syndetic information retrieval system; GUENTHER, R.: The USMARC format for classification data: development and implementation; HOWARTH, L.C.: Factors influencing policies for the adoption and integration of revisions to classification schedules; HUDON, M.: Term definitions in subject thesauri: the Canadian literacy thesaurus experience; HUSAIN, S.: Notational techniques for the accomodation of subjects in Colon Classification 7th edition: theoretical possibility vis-à-vis practical need; KWASNIK, B.H. u. C. JORGERSEN: The exploration by means of repertory grids of semantic differences among names of official documents; MICCO, M.: Suggestions for automating the Library of Congress Classification schedules; PERREAULT, J.M.: An essay on the prehistory of general categories (II): G.W. Leibniz, Conrad Gesner; REES-POTTER, L.K.: How well do thesauri serve the social sciences?; REVIE, C.W. u. G. SMART: The construction and the use of faceted classification schema in technical domains; ROCKMORE, M.: Structuring a flexible faceted thsaurus record for corporate information retrieval; ROULIN, C.: Sub-thesauri as part of a metathesaurus; SMITH, L.C.: UNISIST revisited: compatibility in the context of collaboratories; STILES, W.G.: Notes concerning the use chain indexing as a possible means of simulating the inductive leap within artificial intelligence; SVENONIUS, E., LIU, S. u. B. SUBRAHMANYAM: Automation in chain indexing; TURNER, J.: Structure in data in the Stockshot database at the National Film Board of Canada; VIZINE-GOETZ, D.: The Dewey Decimal Classification as an online classification tool; WILLIAMSON, N.J.: Restructuring UDC: problems and possibilies; WILSON, A.: The hierarchy of belief: ideological tendentiousness in universal classification; WILSON, B.F.: An evaluation of the systematic botany schedule of the Universal Decimal Classification (English full edition, 1979); ZENG, L.: Research and development of classification and thesauri in China; CONFERENCE SUMMARY AND CONCLUSIONS
  2. Frické, M.: Logic and the organization of information (2012) 0.03
    0.032692056 = product of:
      0.054486755 = sum of:
        0.03139529 = weight(_text_:index in 1782) [ClassicSimilarity], result of:
          0.03139529 = score(doc=1782,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.16897833 = fieldWeight in 1782, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.016309716 = weight(_text_:system in 1782) [ClassicSimilarity], result of:
          0.016309716 = score(doc=1782,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.1217929 = fieldWeight in 1782, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.0067817504 = product of:
          0.02034525 = sum of:
            0.02034525 = weight(_text_:29 in 1782) [ClassicSimilarity], result of:
              0.02034525 = score(doc=1782,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.13602862 = fieldWeight in 1782, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.33333334 = coord(1/3)
      0.6 = coord(3/5)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Date
    16. 3.2012 11:26:29
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
  3. Buchanan, B.: Theory of library classification (1979) 0.01
    0.014352133 = product of:
      0.07176066 = sum of:
        0.07176066 = weight(_text_:index in 641) [ClassicSimilarity], result of:
          0.07176066 = score(doc=641,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.3862362 = fieldWeight in 641, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0625 = fieldNorm(doc=641)
      0.2 = coord(1/5)
    
    Content
    Inhalt: Classification: definition and uses - The relationships between classes - Enumerative and faceted schemes - Decisions - The construction of a faceted scheme: I - The construction of a faceted scheme: II - Notation: I - Notation: II - Notation: III - The alphabetical subject index - General classification schemes - Objections to systematic order - Automatic classification
  4. Kochar, R.S.: Library classification systems (1998) 0.01
    0.012558117 = product of:
      0.06279058 = sum of:
        0.06279058 = weight(_text_:index in 931) [ClassicSimilarity], result of:
          0.06279058 = score(doc=931,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.33795667 = fieldWeight in 931, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0546875 = fieldNorm(doc=931)
      0.2 = coord(1/5)
    
    Content
    Contents: Preface. 1. Classification systems. 2. Automatic classification. 3. Knowledge classification. 4. Reflections on library classification. 5. General classification schemes. 6. Hierarchical classification. 7. Faceted classification. B. Present methods and future directions. Index.
  5. Ereshefsky, M.: ¬The poverty of the Linnaean hierarchy : a philosophical study of biological taxonomy (2007) 0.01
    0.010544192 = product of:
      0.05272096 = sum of:
        0.05272096 = weight(_text_:system in 2493) [ClassicSimilarity], result of:
          0.05272096 = score(doc=2493,freq=16.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.3936941 = fieldWeight in 2493, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2493)
      0.2 = coord(1/5)
    
    Abstract
    The question of whether biologists should continue to use the Linnaean hierarchy has been a hotly debated issue. Ereshefsky argues that biologists should abandon the Linnaean system and adopt an alternative that is in line with evolutionary theory. He then makes specific recommendations for a post-Linnaean method of classification.
    Footnote
    Rez. in: KO 35(2008) no.4, S.255-259 (B. Hjoerland): "This book was published in 2000 simultaneously in hardback and as an electronic resource, and, in 2007, as a paperback. The author is a professor of philosophy at the University of Calgary, Canada. He has an impressive list of contributions, mostly addressing issues in biological taxonomy such as units of evolution, natural kinds and the species concept. The book is a scholarly criticism of the famous classification system developed by the Swedish botanist Carl Linnaeus (1707-1778). This system consists of both a set of rules for the naming of living organisms (biological nomenclature) and principles of classification. Linné's system has been used and adapted by biologists over a period of almost 250 years. Under the current system of codes, it is now applied to more than two million species of organisms. Inherent in the Linnaean system is the indication of hierarchic relationships. The Linnaean system has been justified primarily on the basis of stability. Although it has been criticized and alternatives have been suggested, it still has its advocates (e.g., Schuh, 2003). One of the alternatives being developed is The International Code of Phylogenetic Nomenclature, known as the PhyloCode for short, a system that radically alters the current nomenclatural rules. The new proposals have provoked hot debate on nomenclatural issues in biology. . . ."
  6. Scerri, E.R.: ¬The periodic table : its story and its significance (2007) 0.01
    0.008387853 = product of:
      0.041939266 = sum of:
        0.041939266 = weight(_text_:system in 2492) [ClassicSimilarity], result of:
          0.041939266 = score(doc=2492,freq=18.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.31318173 = fieldWeight in 2492, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2492)
      0.2 = coord(1/5)
    
    Abstract
    The periodic table is one of the most potent icons in science. It lies at the core of chemistry and embodies the most fundamental principles of the field. The one definitive text on the development of the periodic table by van Spronsen (1969), has been out of print for a considerable time. The present book provides a successor to van Spronsen, but goes further in giving an evaluation of the extent to which modern physics has, or has not, explained the periodic system. The book is written in a lively style to appeal to experts and interested lay-persons alike. The Periodic Table begins with an overview of the importance of the periodic table and of the elements and it examines the manner in which the term 'element' has been interpreted by chemists and philosophers. The book then turns to a systematic account of the early developments that led to the classification of the elements including the work of Lavoisier, Boyle and Dalton and Cannizzaro. The precursors to the periodic system, like Dobereiner and Gmelin, are discussed. In chapter 3 the discovery of the periodic system by six independent scientists is examined in detail. Two chapters are devoted to the discoveries of Mendeleev, the leading discoverer, including his predictions of new elements and his accommodation of already existing elements. Chapters 6 and 7 consider the impact of physics including the discoveries of radioactivity and isotopy and successive theories of the electron including Bohr's quantum theoretical approach. Chapter 8 discusses the response to the new physical theories by chemists such as Lewis and Bury who were able to draw on detailed chemical knowledge to correct some of the early electronic configurations published by Bohr and others. Chapter 9 provides a critical analysis of the extent to which modern quantum mechanics is, or is not, able to explain the periodic system from first principles. Finally, chapter 10 considers the way that the elements evolved following the Big Bang and in the interior of stars. The book closes with an examination of further chemical aspects including lesser known trends within the periodic system such as the knight's move relationship and secondary periodicity, as well at attempts to explain such trends.
    Footnote
    Rez. in: KO 35(2008) no.4, S.251-254 (B. Hjoerland): "The book is about the classification of chemical elements known as the periodical system. It is described as "one of the most potent icons in science [.] One sees periodic tables everywhere: in industrial labs, workshops, academic labs, and of course, lecture halls" (p. xiii). Among all taxonomies in all domains, there is probably none more respected and more useful than this one. As Scerri states (p. 25): The periodic table ranks as one of the most fruitful and unifying ideas in the whole of modern science, comparable perhaps with Darwin's theory of evolution by natural selection. Unlike such theories as Newtonian mechanics, the periodic table has not been falsified by developments in modern physics but has evolved while remaining essentially unchanged. After evolving for nearly 150 years through the work of numerous individuals, the periodic table remains at the heart of chemistry. This is mainly because it is of immense practical benefit for making predictions about all manner of chemical and physical properties of the elements and possibilities for bond formation. The periodic system provides the basic criteria for organizing knowledge about all the material stuff in the entire universe. It is thus a model that anybody with interests in knowledge organization (KO) should know. Knowledge about the history, philosophy and status of the periodic system also provides important insight for knowledge organization in general. . . . Scerri's book demonstrates how one of the most important classification systems has evolved and what kinds of conceptualizations and classification criteria are at work in it. It is probably the best book about the best classification system ever constructed. It should belong to any library supporting teaching and research in knowledge organization."
  7. Khanna, J.K.: Analytico-synthetic classification : (a study in CC-7) (1994) 0.01
    0.0071760663 = product of:
      0.03588033 = sum of:
        0.03588033 = weight(_text_:index in 1471) [ClassicSimilarity], result of:
          0.03588033 = score(doc=1471,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.1931181 = fieldWeight in 1471, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=1471)
      0.2 = coord(1/5)
    
    Content
    Inhalt: 1. Species of Clasification 2. The Making of an Analytico -Synthetic Classification 3. Analytico -Synthetic Classification 4. Basic Subject 5. Primary Basic Subject 6. Non-Primary Basic Subject 7. Notation 8. Fundamental Categories 9. Rounds and Lvels 10. Facet Analyysis and Facet Sequence 11. Phase Realtion 12. Devices in Colon Classification 13. Common Isolates 14. Spece Isolates 15. Lnaguage Isolates 16. Time Isolates 17. Call Number-Class Numbers-Book Number 18. Ranganathan's nfluence on International Classification Thought 19. Alphabetical Index to the Schedule of Basic Subjects
  8. Advances in classification research. Vol.10 : Proceedings of the 10th ASIS SIG/CR Classification Research Workshop, held at the 62nd ASIS Annual Meeting Nov 1-5, 1999, Washington (2001) 0.01
    0.0055919024 = product of:
      0.027959513 = sum of:
        0.027959513 = weight(_text_:system in 1586) [ClassicSimilarity], result of:
          0.027959513 = score(doc=1586,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 1586, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=1586)
      0.2 = coord(1/5)
    
    Content
    Enthält die Beiträge: DAVENPORT, E.: Implicit orders: documentary genres and organizational practice; ANDERSEN, J. u. F.S. CHRISTENSEN: Wittgenstein and indexing theory; OLSON, H.A.: Cultural discourses of classification: indigeous alternatives to the tradition of Aristotle, Dürkheim, and Foucault; FRÂNCU, V.: A universal classification system going through changes; JACOB, E.K. u. U. PRISS: Nontraditional indexing structures for the management of electronic resources; BROOKS, T.A.: Relevance auras: macro patterns and micro scatter; RUIZ, M.E. u. SRINIVASAN, P.: Combining machine learning and hierarchical indexing structures for text categorization; WEEDMAN, J.: Local practice and the growth of knowledge: decisions in subject access to digitized images
  9. Vickery, B.C.: Faceted classification : A guide to construction and use of special schemes (1986) 0.01
    0.0055919024 = product of:
      0.027959513 = sum of:
        0.027959513 = weight(_text_:system in 2475) [ClassicSimilarity], result of:
          0.027959513 = score(doc=2475,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 2475, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2475)
      0.2 = coord(1/5)
    
    Abstract
    A perfect little book, with just 63 pages of text. From chapter A, Introduction, to U, Mechanization, it covers everything about making a faceted classification: what they are, why they are needed, how to do facet analysis, examples from existing faceted schemes, orderings, common subdivisions, the contents of each facet, notation, filing order, how to perform classification with the created system, and indexing. Each chapter is brief but has full coverage of the subject. "The technique of constructing a special faceted classification is not a settled, automatic, codified procedure. Nothing so complex as the field of knowledge could be analysed and organized by rule-of-thumb. We can therefore offer no more than a guide, describing tested procedures and discussing some difficulties." Vickery was a member of the Classification Research Group and one of the foremost classificationists.
  10. Szostak, R.: Classifying science : phenomena, data, theory, method, practice (2004) 0.00
    0.003954072 = product of:
      0.01977036 = sum of:
        0.01977036 = weight(_text_:system in 325) [ClassicSimilarity], result of:
          0.01977036 = score(doc=325,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.14763528 = fieldWeight in 325, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0234375 = fieldNorm(doc=325)
      0.2 = coord(1/5)
    
    Abstract
    Classification is the essential first step in science. The study of science, as well as the practice of science, will thus benefit from a detailed classification of different types of science. In this book, science - defined broadly to include the social sciences and humanities - is first unpacked into its constituent elements: the phenomena studied, the data used, the theories employed, the methods applied, and the practices of scientists. These five elements are then classified in turn. Notably, the classifications of both theory types and methods allow the key strengths and weaknesses of different theories and methods to be readily discerned and compared. Connections across classifications are explored: should certain theories or phenomena be investigated only with certain methods? What is the proper function and form of scientific paradigms? Are certain common errors and biases in scientific practice associated with particular phenomena, data, theories, or methods? The classifications point to several ways of improving both specialized and interdisciplinary research and teaching, and especially of enhancing communication across communities of scholars. The classifications also support a superior system of document classification that would allow searches by theory and method used as well as causal links investigated.
    Content
    Inhalt: - Chapter 1: Classifying Science: 1.1. A Simple Classificatory Guideline - 1.2. The First "Cut" (and Plan of Work) - 1.3. Some Preliminaries - Chapter 2: Classifying Phenomena and Data: 2.1. Classifying Phenomena - 2.2. Classifying Data - Chapter 3: Classifying Theory: 3.1. Typology of Theory - 3.2. What Is a Theory? - 3.3. Evaluating Theories - 3.4. Types of Theory and the Five Types of Causation - 3.5. Classifying Individual Theories - 3.6. Advantages of a Typology of Theory - Chapter 4: Classifying Method: 4.1. Classifying Methods - 4.2. Typology of Strengths and Weaknesses of Methods - 4.3. Qualitative Versus Quantitative Analysis Revisited - 4.4. Evaluating Methods - 4.5. Classifying Particular Methods Within The Typology - 4.6. Advantages of a Typology of Methods - Chapter 5: Classifying Practice: 5.1. Errors and Biases in ScienceChapter - 5.2. Typology of (Critiques of) Scientific Practice - 5.3. Utilizing This Classification - 5.4. The Five Types of Ethical Analysis - Chapter 6: Drawing Connections Across These Classifications: 6.1. Theory and Method - 6.2. Theory (Method) and Phenomena (Data) - 6.3. Better Paradigms - 6.4. Critiques of Scientific Practice: Are They Correlated with Other Classifications? - Chapter 7: Classifying Scientific Documents: 7.1. Faceted or Enumerative? - 7.2. Classifying By Phenomena Studied - 7.3. Classifying By Theory Used - 7.4. Classifying By Method Used - 7.5 Links Among Subjects - 7.6. Type of Work, Language, and More - 7.7. Critiques of Scientific Practice - 7.8. Classifying Philosophy - 7.9. Evaluating the System - Chapter 8: Concluding Remarks: 8.1. The Classifications - 8.2. Advantages of These Various Classifications - 8.3. Drawing Connections Across Classifications - 8.4. Golden Mean Arguments - 8.5. Why Should Science Be Believed? - 8.6. How Can Science Be Improved? - 8.7. How Should Science Be Taught?
  11. Bowker, G.C.; Star, S.L.: Sorting things out : classification and its consequences (1999) 0.00
    0.003727935 = product of:
      0.018639674 = sum of:
        0.018639674 = weight(_text_:system in 733) [ClassicSimilarity], result of:
          0.018639674 = score(doc=733,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.13919188 = fieldWeight in 733, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=733)
      0.2 = coord(1/5)
    
    Abstract
    Is this book sociology, anthropology, or taxonomy? Sorting Things Out, by communications theorists Geoffrey C. Bowker and Susan Leigh Star, covers a lot of conceptual ground in its effort to sort out exactly how and why we classify and categorize the things and concepts we encounter day to day. But the analysis doesn't stop there; the authors go on to explore what happens to our thinking as a result of our classifications. With great insight and precise academic language, they pick apart our information systems and language structures that lie deeper than the everyday categories we use. The authors focus first on the International Classification of Diseases (ICD), a widely used scheme used by health professionals worldwide, but also look at other health information systems, racial classifications used by South Africa during apartheid, and more. Though it comes off as a bit too academic at times (by the end of the 20th century, most writers should be able to get the spelling of McDonald's restaurant right), the book has a clever charm that thoughtful readers will surely appreciate. A sly sense of humor sneaks into the writing, giving rise to the chapter title "The Kindness of Strangers," for example. After arguing that categorization is both strongly influenced by and a powerful reinforcer of ideology, it follows that revolutions (political or scientific) must change the way things are sorted in order to throw over the old system. Who knew that such simple, basic elements of thought could have such far-reaching consequences? Whether you ultimately place it with social science, linguistics, or (as the authors fear) fantasy, make sure you put Sorting Things Out in your reading pile.
  12. Broughton, V.: Essential classification (2004) 0.00
    0.0035880331 = product of:
      0.017940165 = sum of:
        0.017940165 = weight(_text_:index in 2824) [ClassicSimilarity], result of:
          0.017940165 = score(doc=2824,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.09655905 = fieldWeight in 2824, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.015625 = fieldNorm(doc=2824)
      0.2 = coord(1/5)
    
    Footnote
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."
  13. Dimensions of knowledge : facets for knowledge organization (2017) 0.00
    0.001937643 = product of:
      0.009688215 = sum of:
        0.009688215 = product of:
          0.029064644 = sum of:
            0.029064644 = weight(_text_:29 in 4154) [ClassicSimilarity], result of:
              0.029064644 = score(doc=4154,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19432661 = fieldWeight in 4154, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4154)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    17. 2.2018 19:11:29

Years