Search (161 results, page 2 of 9)

  • × theme_ss:"Semantic Web"
  1. Metadata and semantics research : 7th Research Conference, MTSR 2013 Thessaloniki, Greece, November 19-22, 2013. Proceedings (2013) 0.02
    0.024328757 = product of:
      0.06082189 = sum of:
        0.028249256 = weight(_text_:system in 1155) [ClassicSimilarity], result of:
          0.028249256 = score(doc=1155,freq=6.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.21095149 = fieldWeight in 1155, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1155)
        0.032572635 = product of:
          0.048858948 = sum of:
            0.02034525 = weight(_text_:29 in 1155) [ClassicSimilarity], result of:
              0.02034525 = score(doc=1155,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.13602862 = fieldWeight in 1155, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1155)
            0.0285137 = weight(_text_:22 in 1155) [ClassicSimilarity], result of:
              0.0285137 = score(doc=1155,freq=4.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19150631 = fieldWeight in 1155, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1155)
          0.6666667 = coord(2/3)
      0.4 = coord(2/5)
    
    Abstract
    Metadata and semantics are integral to any information system and significant to the sphere of Web data. Research focusing on metadata and semantics is crucial for advancing our understanding and knowledge of metadata; and, more profoundly for being able to effectively discover, use, archive, and repurpose information. In response to this need, researchers are actively examining methods for generating, reusing, and interchanging metadata. Integrated with these developments is research on the application of computational methods, linked data, and data analytics. A growing body of work also targets conceptual and theoretical designs providing foundational frameworks for metadata and semantic applications. There is no doubt that metadata weaves its way into nearly every aspect of our information ecosystem, and there is great motivation for advancing the current state of metadata and semantics. To this end, it is vital that scholars and practitioners convene and share their work.
    The MTSR 2013 program and the contents of these proceedings show a rich diversity of research and practices, drawing on problems from metadata and semantically focused tools and technologies, linked data, cross-language semantics, ontologies, metadata models, and semantic system and metadata standards. The general session of the conference included 18 papers covering a broad spectrum of topics, proving the interdisciplinary field of metadata, and was divided into three main themes: platforms for research data sets, system architecture and data management; metadata and ontology validation, evaluation, mapping and interoperability; and content management. Metadata as a research topic is maturing, and the conference also supported the following five tracks: Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures; Metadata and Semantics for Cultural Collections and Applications; Metadata and Semantics for Agriculture, Food and Environment; Big Data and Digital Libraries in Health, Science and Technology; and European and National Projects, and Project Networking. Each track had a rich selection of papers, giving broader diversity to MTSR, and enabling deeper exploration of significant topics.
    All the papers underwent a thorough and rigorous peer-review process. The review and selection this year was highly competitive and only papers containing significant research results, innovative methods, or novel and best practices were accepted for publication. Only 29 of 89 submissions were accepted as full papers, representing 32.5% of the total number of submissions. Additional contributions covering noteworthy and important results in special tracks or project reports were accepted, totaling 42 accepted contributions. This year's conference included two outstanding keynote speakers. Dr. Stefan Gradmann, a professor arts department of KU Leuven (Belgium) and director of university library, addressed semantic research drawing from his work with Europeana. The title of his presentation was, "Towards a Semantic Research Library: Digital Humanities Research, Europeana and the Linked Data Paradigm". Dr. Michail Salampasis, associate professor from our conference host institution, the Department of Informatics of the Alexander TEI of Thessaloniki, presented new potential, intersecting search and linked data. The title of his talk was, "Rethinking the Search Experience: What Could Professional Search Systems Do Better?"
    Date
    17.12.2013 12:51:22
  2. Davies, J.; Duke, A.; Stonkus, A.: OntoShare: evolving ontologies in a knowledge sharing system (2004) 0.02
    0.022597253 = product of:
      0.056493133 = sum of:
        0.028243875 = weight(_text_:context in 4409) [ClassicSimilarity], result of:
          0.028243875 = score(doc=4409,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.16027321 = fieldWeight in 4409, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4409)
        0.028249256 = weight(_text_:system in 4409) [ClassicSimilarity], result of:
          0.028249256 = score(doc=4409,freq=6.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.21095149 = fieldWeight in 4409, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4409)
      0.4 = coord(2/5)
    
    Abstract
    We saw in the introduction how the Semantic Web makes possible a new generation of knowledge management tools. We now turn our attention more specifically to Semantic Web based support for virtual communities of practice. The notion of communities of practice has attracted much attention in the field of knowledge management. Communities of practice are groups within (or sometimes across) organizations who share a common set of information needs or problems. They are typically not a formal organizational unit but an informal network, each sharing in part a common agenda and shared interests or issues. In one example it was found that a lot of knowledge sharing among copier engineers took place through informal exchanges, often around a water cooler. As well as local, geographically based communities, trends towards flexible working and globalisation have led to interest in supporting dispersed communities using Internet technology. The challenge for organizations is to support such communities and make them effective. Provided with an ontology meeting the needs of a particular community of practice, knowledge management tools can arrange knowledge assets into the predefined conceptual classes of the ontology, allowing more natural and intuitive access to knowledge. Knowledge management tools must give users the ability to organize information into a controllable asset. Building an intranet-based store of information is not sufficient for knowledge management; the relationships within the stored information are vital. These relationships cover such diverse issues as relative importance, context, sequence, significance, causality and association. The potential for knowledge management tools is vast; not only can they make better use of the raw information already available, but they can sift, abstract and help to share new information, and present it to users in new and compelling ways.
    In this chapter, we describe the OntoShare system which facilitates and encourages the sharing of information between communities of practice within (or perhaps across) organizations and which encourages people - who may not previously have known of each other's existence in a large organization - to make contact where there are mutual concerns or interests. As users contribute information to the community, a knowledge resource annotated with meta-data is created. Ontologies defined using the resource description framework (RDF) and RDF Schema (RDFS) are used in this process. RDF is a W3C recommendation for the formulation of meta-data for WWW resources. RDF(S) extends this standard with the means to specify domain vocabulary and object structures - that is, concepts and the relationships that hold between them. In the next section, we describe in detail the way in which OntoShare can be used to share and retrieve knowledge and how that knowledge is represented in an RDF-based ontology. We then proceed to discuss in Section 10.3 how the ontologies in OntoShare evolve over time based on user interaction with the system and motivate our approach to user-based creation of RDF-annotated information resources. The way in which OntoShare can help to locate expertise within an organization is then described, followed by a discussion of the sociotechnical issues of deploying such a tool. Finally, a planned evaluation exercise and avenues for further research are outlined.
  3. Mirizzi, R.: Exploratory browsing in the Web of Data (2011) 0.02
    0.022501035 = product of:
      0.056252588 = sum of:
        0.03994287 = weight(_text_:context in 4803) [ClassicSimilarity], result of:
          0.03994287 = score(doc=4803,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.22666055 = fieldWeight in 4803, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4803)
        0.016309716 = weight(_text_:system in 4803) [ClassicSimilarity], result of:
          0.016309716 = score(doc=4803,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.1217929 = fieldWeight in 4803, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4803)
      0.4 = coord(2/5)
    
    Abstract
    The Linked Data initiative and the state of the art in semantic technologies led off all brand new search and mash-up applications. The basic idea is to have smarter lookup services for a huge, distributed and social knowledge base. All these applications catch and (re)propose, under a semantic data perspective, the view of the classical Web as a distributed collection of documents to retrieve. The interlinked nature of the Web, and consequently of the Semantic Web, is exploited (just) to collect and aggregate data coming from different sources. Of course, this is a big step forward in search and Web technologies, but if we limit our investi- gation to retrieval tasks, we miss another important feature of the current Web: browsing and in particular exploratory browsing (a.k.a. exploratory search). Thanks to its hyperlinked nature, the Web defined a new way of browsing documents and knowledge: selection by lookup, navigation and trial-and-error tactics were, and still are, exploited by users to search for relevant information satisfying some initial requirements. The basic assumptions behind a lookup search, typical of Information Retrieval (IR) systems, are no more valid in an exploratory browsing context. An IR system, such as a search engine, assumes that: the user has a clear picture of what she is looking for ; she knows the terminology of the specific knowledge space. On the other side, as argued in, the main challenges in exploratory search can be summarized as: support querying and rapid query refinement; other facets and metadata-based result filtering; leverage search context; support learning and understanding; other visualization to support insight/decision making; facilitate collaboration. In Section 3 we will show two applications for exploratory search in the Semantic Web addressing some of the above challenges.
  4. Ilik, V.: Distributed person data : using Semantic Web compliant data in subject name headings (2015) 0.02
    0.02161984 = product of:
      0.054049596 = sum of:
        0.040348392 = weight(_text_:context in 2292) [ClassicSimilarity], result of:
          0.040348392 = score(doc=2292,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.22896172 = fieldWeight in 2292, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2292)
        0.013701204 = product of:
          0.041103613 = sum of:
            0.041103613 = weight(_text_:29 in 2292) [ClassicSimilarity], result of:
              0.041103613 = score(doc=2292,freq=4.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.2748193 = fieldWeight in 2292, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2292)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Providing efficient access to information is a crucial library mission. Subject classification is one of the major pillars that guarantees the accessibility of records in libraries. In this paper we discuss the need to associate person IDs and URIs with subjects when a named person happens to be the subject of the document. This is often the case with biographies, schools of thought in philosophy, politics, art, and literary criticism. Using Semantic Web compliant data in subject name headings enhances the ability to collocate topics about a person. Also, in retrieval, books about a person would be easily linked to works by that same person. In the context of the Semantic Web, it is expected that, as the available information grows, one would be more effective in the task of information retrieval. Information about a person or, as in the case of this paper, about a researcher exist in various databases, which can be discipline specific or publishers' databases, and in such cases they have an assigned identifier. They also exist in institutional directory databases. We argue that these various databases can be leveraged to support improved discoverability and retrieval of research output for individual authors and institutions, as well as works about those authors.
    Date
    8.11.2015 21:30:29
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
  5. Kushwaha, N.; Vyas, O.P.: SemMovieRec : extraction of semantic features of DBpedia for recommender system (2017) 0.02
    0.018473173 = product of:
      0.04618293 = sum of:
        0.03261943 = weight(_text_:system in 3501) [ClassicSimilarity], result of:
          0.03261943 = score(doc=3501,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.2435858 = fieldWeight in 3501, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3501)
        0.013563501 = product of:
          0.0406905 = sum of:
            0.0406905 = weight(_text_:29 in 3501) [ClassicSimilarity], result of:
              0.0406905 = score(doc=3501,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.27205724 = fieldWeight in 3501, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3501)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  6. Corporate Semantic Web : wie semantische Anwendungen in Unternehmen Nutzen stiften (2015) 0.02
    0.018011969 = product of:
      0.04502992 = sum of:
        0.03727935 = weight(_text_:system in 2246) [ClassicSimilarity], result of:
          0.03727935 = score(doc=2246,freq=8.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.27838376 = fieldWeight in 2246, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2246)
        0.0077505717 = product of:
          0.023251714 = sum of:
            0.023251714 = weight(_text_:29 in 2246) [ClassicSimilarity], result of:
              0.023251714 = score(doc=2246,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.15546128 = fieldWeight in 2246, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2246)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Date
    29. 9.2015 19:11:44
    LCSH
    Information storage and retrieval system
    Information System
    Subject
    Information storage and retrieval system
    Information System
  7. Campbell, D.G.: ¬The birth of the new Web : a Foucauldian reading (2006) 0.02
    0.01597715 = product of:
      0.07988574 = sum of:
        0.07988574 = weight(_text_:context in 239) [ClassicSimilarity], result of:
          0.07988574 = score(doc=239,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.4533211 = fieldWeight in 239, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0546875 = fieldNorm(doc=239)
      0.2 = coord(1/5)
    
    Abstract
    Foucault's The Birth of the Clinic serves as a pattern for understanding the paradigm shifts represented by the Semantic Web. Foucault presents the history ofmedical practice as a 3-stage sequence of transitions: from classificatory techniques to clinical strategies, and then to anatomico-pathological strategies. In this paper, the author removes these three stages both from their medical context and from Foucault's historical sequence, to produce a model for understanding information organization in the context of the Semantic Web. We can extract from Foucault's theory a triadic relationship between three interpretive strategies, all of them defined by their different relationships to a textual body: classification, description and analysis.
  8. Bianchini, C.; Willer, M.: ISBD resource and Its description in the context of the Semantic Web (2014) 0.02
    0.01597715 = product of:
      0.07988574 = sum of:
        0.07988574 = weight(_text_:context in 1998) [ClassicSimilarity], result of:
          0.07988574 = score(doc=1998,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.4533211 = fieldWeight in 1998, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1998)
      0.2 = coord(1/5)
    
    Abstract
    This article explores the question "What is an International Standard for Bibliographic Description (ISBD) resource in the context of the Semantic Web, and what is the relationship of its description to the linked data?" This question is discussed against the background of the dichotomy between the description and access using the Semantic Web differentiation of the three logical layers: real-world objects, web of data, and special purpose (bibliographic) data. The representation of bibliographic data as linked data is discussed, distinguishing the description of a resource from the iconic/objective and the informational/subjective viewpoints. In the conclusion, the authors give views on possible directions of future development of the ISBD.
  9. Zhang, L.; Liu, Q.L.; Zhang, J.; Wang, H.F.; Pan, Y.; Yu, Y.: Semplore: an IR approach to scalable hybrid query of Semantic Web data (2007) 0.02
    0.015536643 = product of:
      0.07768321 = sum of:
        0.07768321 = weight(_text_:index in 231) [ClassicSimilarity], result of:
          0.07768321 = score(doc=231,freq=6.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.418113 = fieldWeight in 231, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=231)
      0.2 = coord(1/5)
    
    Abstract
    As an extension to the current Web, Semantic Web will not only contain structured data with machine understandable semantics but also textual information. While structured queries can be used to find information more precisely on the Semantic Web, keyword searches are still needed to help exploit textual information. It thus becomes very important that we can combine precise structured queries with imprecise keyword searches to have a hybrid query capability. In addition, due to the huge volume of information on the Semantic Web, the hybrid query must be processed in a very scalable way. In this paper, we define such a hybrid query capability that combines unary tree-shaped structured queries with keyword searches. We show how existing information retrieval (IR) index structures and functions can be reused to index semantic web data and its textual information, and how the hybrid query is evaluated on the index structure using IR engines in an efficient and scalable manner. We implemented this IR approach in an engine called Semplore. Comprehensive experiments on its performance show that it is a promising approach. It leads us to believe that it may be possible to evolve current web search engines to query and search the Semantic Web. Finally, we briefy describe how Semplore is used for searching Wikipedia and an IBM customer's product information.
  10. Subirats, I.; Prasad, A.R.D.; Keizer, J.; Bagdanov, A.: Implementation of rich metadata formats and demantic tools using DSpace (2008) 0.01
    0.013616532 = product of:
      0.03404133 = sum of:
        0.02636048 = weight(_text_:system in 2656) [ClassicSimilarity], result of:
          0.02636048 = score(doc=2656,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.19684705 = fieldWeight in 2656, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=2656)
        0.0076808496 = product of:
          0.023042548 = sum of:
            0.023042548 = weight(_text_:22 in 2656) [ClassicSimilarity], result of:
              0.023042548 = score(doc=2656,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.15476047 = fieldWeight in 2656, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2656)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    This poster explores the customization of DSpace to allow the use of the AGRIS Application Profile metadata standard and the AGROVOC thesaurus. The objective is the adaptation of DSpace, through the least invasive code changes either in the form of plug-ins or add-ons, to the specific needs of the Agricultural Sciences and Technology community. Metadata standards such as AGRIS AP, and Knowledge Organization Systems such as the AGROVOC thesaurus, provide mechanisms for sharing information in a standardized manner by recommending the use of common semantics and interoperable syntax (Subirats et al., 2007). AGRIS AP was created to enhance the description, exchange and subsequent retrieval of agricultural Document-like Information Objects (DLIOs). It is a metadata schema which draws from Metadata standards such as Dublin Core (DC), the Australian Government Locator Service Metadata (AGLS) and the Agricultural Metadata Element Set (AgMES) namespaces. It allows sharing of information across dispersed bibliographic systems (FAO, 2005). AGROVOC68 is a multilingual structured thesaurus covering agricultural and related domains. Its main role is to standardize the indexing process in order to make searching simpler and more efficient. AGROVOC is developed by FAO (Lauser et al., 2006). The customization of the DSpace is taking place in several phases. First, the AGRIS AP metadata schema was mapped onto the metadata DSpace model, with several enhancements implemented to support AGRIS AP elements. Next, AGROVOC will be integrated as a controlled vocabulary accessed through a local SKOS or OWL file. Eventually the system will be configurable to access AGROVOC through local files or remotely via webservices. Finally, spell checking and tooltips will be incorporated in the user interface to support metadata editing. Adapting DSpace to support AGRIS AP and annotation using the semantically-rich AGROVOC thesaurus transform DSpace into a powerful, domain-specific system for annotation and exchange of bibliographic metadata in the agricultural domain.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  11. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.013160261 = product of:
      0.032900654 = sum of:
        0.023299592 = weight(_text_:system in 4553) [ClassicSimilarity], result of:
          0.023299592 = score(doc=4553,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 4553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4553)
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.028803186 = score(doc=4553,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Semantic Web knowledge representation standards, and in particular RDF and OWL, often come endowed with a formal semantics which is considered to be of fundamental importance for the field. Reasoning, i.e., the drawing of logical inferences from knowledge expressed in such standards, is traditionally based on logical deductive methods and algorithms which can be proven to be sound and complete and terminating, i.e. correct in a very strong sense. For various reasons, though, in particular the scalability issues arising from the ever increasing amounts of Semantic Web data available and the inability of deductive algorithms to deal with noise in the data, it has been argued that alternative means of reasoning should be investigated which bear high promise for high scalability and better robustness. From this perspective, deductive algorithms can be considered the gold standard regarding correctness against which alternative methods need to be tested. In this paper, we show that it is possible to train a Deep Learning system on RDF knowledge graphs, such that it is able to perform reasoning over new RDF knowledge graphs, with high precision and recall compared to the deductive gold standard.
    Date
    16.11.2018 14:22:01
  12. Cahier, J.-P.; Zaher, L'H.; Isoard , G.: Document et modèle pour l'action, une méthode pour le web socio-sémantique : application à un web 2.0 en développement durable (2010) 0.01
    0.012558117 = product of:
      0.06279058 = sum of:
        0.06279058 = weight(_text_:index in 4836) [ClassicSimilarity], result of:
          0.06279058 = score(doc=4836,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.33795667 = fieldWeight in 4836, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4836)
      0.2 = coord(1/5)
    
    Abstract
    We present the DOCMA method (DOCument and Model for Action) focused to Socio-Semantic web applications in large communities of interest. DOCMA is dedicated to end-users without any knowledge in Information Science. Community Members can elicit, structure and index shared business items emerging from their inquiry (such as projects, actors, products, geographically situated objects of interest.). We apply DOCMA to an experiment in the field of Sustainable Development: the Cartodd-Map21 collaborative Web portal.
  13. Prasad, A.R.D.; Madalli, D.P.: Faceted infrastructure for semantic digital libraries (2008) 0.01
    0.011412249 = product of:
      0.057061244 = sum of:
        0.057061244 = weight(_text_:context in 1905) [ClassicSimilarity], result of:
          0.057061244 = score(doc=1905,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32380077 = fieldWeight in 1905, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1905)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - The paper aims to argue that digital library retrieval should be based on semantic representations and propose a semantic infrastructure for digital libraries. Design/methodology/approach - The approach taken is formal model based on subject representation for digital libraries. Findings - Search engines and search techniques have fallen short of user expectations as they do not give context based retrieval. Deploying semantic web technologies would lead to efficient and more precise representation of digital library content and hence better retrieval. Though digital libraries often have metadata of information resources which can be accessed through OAI-PMH, much remains to be accomplished in making digital libraries semantic web compliant. This paper presents a semantic infrastructure for digital libraries, that will go a long way in providing them and web based information services with products highly customised to users needs. Research limitations/implications - Here only a model for semantic infrastructure is proposed. This model is proposed after studying current user-centric, top-down models adopted in digital library service architectures. Originality/value - This paper gives a generic model for building semantic infrastructure for digital libraries. Faceted ontologies for digital libraries is just one approach. But the same may be adopted by groups working with different approaches in building ontologies to realise efficient retrieval in digital libraries.
    Footnote
    Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
  14. Weibel, S.L.: Social Bibliography : a personal perspective on libraries and the Semantic Web (2006) 0.01
    0.01129755 = product of:
      0.05648775 = sum of:
        0.05648775 = weight(_text_:context in 250) [ClassicSimilarity], result of:
          0.05648775 = score(doc=250,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32054642 = fieldWeight in 250, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0546875 = fieldNorm(doc=250)
      0.2 = coord(1/5)
    
    Abstract
    This paper presents a personal perspective on libraries and the Semantic Web. The paper discusses computing power, increased availability of processable text, social software developments and the ideas underlying Web 2.0 and the impact of these developments in the context of libraries and information. The article concludes with a discussion of social bibliography and the declining hegemony of catalog records, and emphasizes the strengths of librarianship and the profession's ability to contribute to Semantic Web development.
  15. Fripp, D.: Using linked data to classify web documents (2010) 0.01
    0.01129755 = product of:
      0.05648775 = sum of:
        0.05648775 = weight(_text_:context in 4172) [ClassicSimilarity], result of:
          0.05648775 = score(doc=4172,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32054642 = fieldWeight in 4172, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4172)
      0.2 = coord(1/5)
    
    Abstract
    Purpose - The purpose of this paper is to find a relationship between traditional faceted classification schemes and semantic web document annotators, particularly in the linked data environment. Design/methodology/approach - A consideration of the conceptual ideas behind faceted classification and linked data architecture is made. Analysis of selected web documents is performed using Calais' Semantic Proxy to support the considerations. Findings - Technical language aside, the principles of both approaches are very similar. Modern classification techniques have the potential to automatically generate metadata to drive more precise information recall by including a semantic layer. Originality/value - Linked data have not been explicitly considered in this context before in the published literature.
  16. Mangold, C.: ¬A survey and classification of semantic search approaches (2007) 0.01
    0.01129755 = product of:
      0.05648775 = sum of:
        0.05648775 = weight(_text_:context in 259) [ClassicSimilarity], result of:
          0.05648775 = score(doc=259,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32054642 = fieldWeight in 259, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0546875 = fieldNorm(doc=259)
      0.2 = coord(1/5)
    
    Abstract
    A broad range of approaches to semantic document retrieval has been developed in the context of the Semantic Web. This survey builds bridges among them. We introduce a classification scheme for semantic search engines and clarify terminology. We present an overview of ten selected approaches and compare them by means of our classification criteria. Based on this comparison, we identify not only common concepts and outstanding features, but also open issues. Finally, we give directions for future application development and research.
  17. Voß, J.: ¬Das Simple Knowledge Organisation System (SKOS) als Kodierungs- und Austauschformat der DDC für Anwendungen im Semantischen Web (2007) 0.01
    0.011183805 = product of:
      0.055919025 = sum of:
        0.055919025 = weight(_text_:system in 243) [ClassicSimilarity], result of:
          0.055919025 = score(doc=243,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.41757566 = fieldWeight in 243, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.09375 = fieldNorm(doc=243)
      0.2 = coord(1/5)
    
  18. Ulrich, W.: Simple Knowledge Organisation System (2007) 0.01
    0.011183805 = product of:
      0.055919025 = sum of:
        0.055919025 = weight(_text_:system in 105) [ClassicSimilarity], result of:
          0.055919025 = score(doc=105,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.41757566 = fieldWeight in 105, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.09375 = fieldNorm(doc=105)
      0.2 = coord(1/5)
    
  19. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.01
    0.011183805 = product of:
      0.055919025 = sum of:
        0.055919025 = weight(_text_:system in 3829) [ClassicSimilarity], result of:
          0.055919025 = score(doc=3829,freq=8.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.41757566 = fieldWeight in 3829, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=3829)
      0.2 = coord(1/5)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
  20. Malmsten, M.: Making a library catalogue part of the Semantic Web (2008) 0.01
    0.010801995 = product of:
      0.054009974 = sum of:
        0.054009974 = product of:
          0.08101496 = sum of:
            0.0406905 = weight(_text_:29 in 2640) [ClassicSimilarity], result of:
              0.0406905 = score(doc=2640,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.27205724 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
            0.04032446 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.04032446 = score(doc=2640,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.2708308 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2640)
          0.6666667 = coord(2/3)
      0.2 = coord(1/5)
    
    Date
    20. 2.2009 10:29:39
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas

Years

Languages

  • e 138
  • d 20
  • f 1
  • More… Less…

Types

  • a 99
  • el 48
  • m 29
  • s 17
  • x 4
  • n 3
  • r 1
  • More… Less…

Subjects

Classifications