Search (55 results, page 1 of 3)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Semantische Interoperabilität"
  1. Levergood, B.; Farrenkopf, S.; Frasnelli, E.: ¬The specification of the language of the field and interoperability : cross-language access to catalogues and online libraries (CACAO) (2008) 0.05
    0.05273932 = product of:
      0.08789886 = sum of:
        0.04841807 = weight(_text_:context in 2646) [ClassicSimilarity], result of:
          0.04841807 = score(doc=2646,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 2646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=2646)
        0.027959513 = weight(_text_:system in 2646) [ClassicSimilarity], result of:
          0.027959513 = score(doc=2646,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 2646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2646)
        0.011521274 = product of:
          0.03456382 = sum of:
            0.03456382 = weight(_text_:22 in 2646) [ClassicSimilarity], result of:
              0.03456382 = score(doc=2646,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.23214069 = fieldWeight in 2646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2646)
          0.33333334 = coord(1/3)
      0.6 = coord(3/5)
    
    Abstract
    The CACAO Project (Cross-language Access to Catalogues and Online Libraries) has been designed to implement natural language processing and cross-language information retrieval techniques to provide cross-language access to information in libraries, a critical issue in the linguistically diverse European Union. This project report addresses two metadata-related challenges for the library community in this context: "false friends" (identical words having different meanings in different languages) and term ambiguity. The possible solutions involve enriching the metadata with attributes specifying language or the source authority file, or associating potential search terms to classes in a classification system. The European Library will evaluate an early implementation of this work in late 2008.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  2. Heckner, M.; Mühlbacher, S.; Wolff, C.: Tagging tagging : a classification model for user keywords in scientific bibliography management systems (2007) 0.05
    0.052079234 = product of:
      0.08679872 = sum of:
        0.032278713 = weight(_text_:context in 533) [ClassicSimilarity], result of:
          0.032278713 = score(doc=533,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.18316938 = fieldWeight in 533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.03125 = fieldNorm(doc=533)
        0.03588033 = weight(_text_:index in 533) [ClassicSimilarity], result of:
          0.03588033 = score(doc=533,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.1931181 = fieldWeight in 533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.03125 = fieldNorm(doc=533)
        0.018639674 = weight(_text_:system in 533) [ClassicSimilarity], result of:
          0.018639674 = score(doc=533,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.13919188 = fieldWeight in 533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=533)
      0.6 = coord(3/5)
    
    Abstract
    Recently, a growing amount of systems that allow personal content annotation (tagging) are being created, ranging from personal sites for organising bookmarks (del.icio.us), photos (flickr.com) or videos (video.google.com, youtube.com) to systems for managing bibliographies for scientific research projects (citeulike.org, connotea.org). Simultaneously, a debate on the pro and cons of allowing users to add personal keywords to digital content has arisen. One recurrent point-of-discussion is whether tagging can solve the well-known vocabulary problem: In order to support successful retrieval in complex environments, it is necessary to index an object with a variety of aliases (cf. Furnas 1987). In this spirit, social tagging enhances the pool of rigid, traditional keywording by adding user-created retrieval vocabularies. Furthermore, tagging goes beyond simple personal content-based keywords by providing meta-keywords like funny or interesting that "identify qualities or characteristics" (Golder and Huberman 2006, Kipp and Campbell 2006, Kipp 2007, Feinberg 2006, Kroski 2005). Contrarily, tagging systems are claimed to lead to semantic difficulties that may hinder the precision and recall of tagging systems (e.g. the polysemy problem, cf. Marlow 2006, Lakoff 2005, Golder and Huberman 2006). Empirical research on social tagging is still rare and mostly from a computer linguistics or librarian point-of-view (Voß 2007) which focus either on the automatic statistical analyses of large data sets, or intellectually inspect single cases of tag usage: Some scientists studied the evolution of tag vocabularies and tag distribution in specific systems (Golder and Huberman 2006, Hammond 2005). Others concentrate on tagging behaviour and tagger characteristics in collaborative systems. (Hammond 2005, Kipp and Campbell 2007, Feinberg 2006, Sen 2006). However, little research has been conducted on the functional and linguistic characteristics of tags.1 An analysis of these patterns could show differences between user wording and conventional keywording. In order to provide a reasonable basis for comparison, a classification system for existing tags is needed.
    Therefore our main research questions are as follows: - Is it possible to discover regular patterns in tag usage and to establish a stable category model? - Does a specific tagging language comparable to internet slang or chatspeak evolve? - How do social tags differ from traditional (author / expert) keywords? - To what degree are social tags taken from or findable in the full text of the tagged resource? - Do tags in a research literature context go beyond simple content description (e.g. tags indicating time or task-related information, cf. Kipp et al. 2006)?
  3. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.04
    0.043949433 = product of:
      0.07324905 = sum of:
        0.040348392 = weight(_text_:context in 4607) [ClassicSimilarity], result of:
          0.040348392 = score(doc=4607,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.22896172 = fieldWeight in 4607, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4607)
        0.023299592 = weight(_text_:system in 4607) [ClassicSimilarity], result of:
          0.023299592 = score(doc=4607,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 4607, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4607)
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
              0.028803186 = score(doc=4607,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 4607, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4607)
          0.33333334 = coord(1/3)
      0.6 = coord(3/5)
    
    Abstract
    Smart applications behave intelligently because they understand at least partially the context where they operate. To do this, they need not only a formal domain model but also formal descriptions of the data they process and their own operational behaviour. Interoperability of smart applications is based on formalised definitions of all their data and processes. This paper studies the semantic interoperability of data in the case of eLearning and describes an experiment and its assessment. New content is imported into a knowledge-based learning environment without real updates of the original domain model, which is encoded as a knowledge base of conceptual graphs. A component called mediator enables the import by assigning dummy metadata annotations for the imported items. However, some functionality of the original system is lost, when processing the imported content, due to the lack of proper metadata annotation which cannot be associated fully automatically. So the paper presents an interoperability scenario when appropriate content items are viewed from the perspective of the original world and can be (partially) reused there.
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a
  4. McCulloch, E.; Macgregor, G.: Analysis of equivalence mapping for terminology services (2008) 0.04
    0.0385732 = product of:
      0.096433006 = sum of:
        0.068473496 = weight(_text_:context in 550) [ClassicSimilarity], result of:
          0.068473496 = score(doc=550,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.38856095 = fieldWeight in 550, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=550)
        0.027959513 = weight(_text_:system in 550) [ClassicSimilarity], result of:
          0.027959513 = score(doc=550,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 550, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=550)
      0.4 = coord(2/5)
    
    Abstract
    This paper assesses the range of equivalence or mapping types required to facilitate interoperability in the context of a distributed terminology server. A detailed set of mapping types were examined, with a view to determining their validity for characterizing relationships between mappings from selected terminologies (AAT, LCSH, MeSH, and UNESCO) to the Dewey Decimal Classification (DDC) scheme. It was hypothesized that the detailed set of 19 match types proposed by Chaplan in 1995 is unnecessary in this context and that they could be reduced to a less detailed conceptually-based set. Results from an extensive mapping exercise support the main hypothesis and a generic suite of match types are proposed, although doubt remains over the current adequacy of the developing Simple Knowledge Organization System (SKOS) Core Mapping Vocabulary Specification (MVS) for inter-terminology mapping.
  5. Boteram, F.; Hubrich, J.: Towards a comprehensive international Knowledge Organization System (2008) 0.03
    0.03158463 = product of:
      0.07896157 = sum of:
        0.055919025 = weight(_text_:system in 4786) [ClassicSimilarity], result of:
          0.055919025 = score(doc=4786,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.41757566 = fieldWeight in 4786, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.09375 = fieldNorm(doc=4786)
        0.023042548 = product of:
          0.06912764 = sum of:
            0.06912764 = weight(_text_:22 in 4786) [ClassicSimilarity], result of:
              0.06912764 = score(doc=4786,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.46428138 = fieldWeight in 4786, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4786)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Date
    22. 9.2008 19:30:41
  6. Nicholson, D.M.; Dawson, A.; Shiri, A.: HILT: a pilot terminology mapping service with a DDC spine (2006) 0.03
    0.030551035 = product of:
      0.076377586 = sum of:
        0.04841807 = weight(_text_:context in 2152) [ClassicSimilarity], result of:
          0.04841807 = score(doc=2152,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 2152, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=2152)
        0.027959513 = weight(_text_:system in 2152) [ClassicSimilarity], result of:
          0.027959513 = score(doc=2152,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 2152, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2152)
      0.4 = coord(2/5)
    
    Footnote
    Beitrag in einem Themenheft "Moving beyond the presentation layer: content and context in the Dewey Decimal Classification (DDC) System"
  7. Gödert, W.; Hubrich, J.; Boteram, F.: Thematische Recherche und Interoperabilität : Wege zur Optimierung des Zugriffs auf heterogen erschlossene Dokumente (2009) 0.03
    0.029211653 = product of:
      0.07302913 = sum of:
        0.06342807 = weight(_text_:index in 193) [ClassicSimilarity], result of:
          0.06342807 = score(doc=193,freq=4.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.3413878 = fieldWeight in 193, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=193)
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 193) [ClassicSimilarity], result of:
              0.028803186 = score(doc=193,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 193, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=193)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Source
    https://opus4.kobv.de/opus4-bib-info/frontdoor/index/index/searchtype/authorsearch/author/%22Hubrich%2C+Jessica%22/docId/703/start/0/rows/20
  8. Isaac, A.; Schlobach, S.; Matthezing, H.; Zinn, C.: Integrated access to cultural heritage resources through representation and alignment of controlled vocabularies (2008) 0.03
    0.025715468 = product of:
      0.06428867 = sum of:
        0.045648996 = weight(_text_:context in 3398) [ClassicSimilarity], result of:
          0.045648996 = score(doc=3398,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.25904062 = fieldWeight in 3398, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.03125 = fieldNorm(doc=3398)
        0.018639674 = weight(_text_:system in 3398) [ClassicSimilarity], result of:
          0.018639674 = score(doc=3398,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.13919188 = fieldWeight in 3398, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.03125 = fieldNorm(doc=3398)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - To show how semantic web techniques can help address semantic interoperability issues in the broad cultural heritage domain, allowing users an integrated and seamless access to heterogeneous collections. Design/methodology/approach - This paper presents the heterogeneity problems to be solved. It introduces semantic web techniques that can help in solving them, focusing on the representation of controlled vocabularies and their semantic alignment. It gives pointers to some previous projects and experiments that have tried to address the problems discussed. Findings - Semantic web research provides practical technical and methodological approaches to tackle the different issues. Two contributions of interest are the simple knowledge organisation system model and automatic vocabulary alignment methods and tools. These contributions were demonstrated to be usable for enabling semantic search and navigation across collections. Research limitations/implications - The research aims at designing different representation and alignment methods for solving interoperability problems in the context of controlled subject vocabularies. Given the variety and technical richness of current research in the semantic web field, it is impossible to provide an in-depth account or an exhaustive list of references. Every aspect of the paper is, however, given one or several pointers for further reading. Originality/value - This article provides a general and practical introduction to relevant semantic web techniques. It is of specific value for the practitioners in the cultural heritage and digital library domains who are interested in applying these methods in practice.
    Content
    This paper is based on a talk given at "Information Access for the Global Community, An International Seminar on the Universal Decimal Classification" held on 4-5 June 2007 in The Hague, The Netherlands. An abstract of this talk will be published in Extensions and Corrections to the UDC, an annual publication of the UDC consortium. Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
  9. Krause, J.: Semantic heterogeneity : comparing new semantic web approaches with those of digital libraries (2008) 0.03
    0.025459195 = product of:
      0.063647985 = sum of:
        0.040348392 = weight(_text_:context in 1908) [ClassicSimilarity], result of:
          0.040348392 = score(doc=1908,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.22896172 = fieldWeight in 1908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1908)
        0.023299592 = weight(_text_:system in 1908) [ClassicSimilarity], result of:
          0.023299592 = score(doc=1908,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 1908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1908)
      0.4 = coord(2/5)
    
    Abstract
    Purpose - To demonstrate that newer developments in the semantic web community, particularly those based on ontologies (simple knowledge organization system and others) mitigate common arguments from the digital library (DL) community against participation in the Semantic web. Design/methodology/approach - The approach is a semantic web discussion focusing on the weak structure of the Web and the lack of consideration given to the semantic content during indexing. Findings - The points criticised by the semantic web and ontology approaches are the same as those of the DL "Shell model approach" from the mid-1990s, with emphasis on the centrality of its heterogeneity components (used, for example, in vascoda). The Shell model argument began with the "invisible web", necessitating the restructuring of DL approaches. The conclusion is that both approaches fit well together and that the Shell model, with its semantic heterogeneity components, can be reformulated on the semantic web basis. Practical implications - A reinterpretation of the DL approaches of semantic heterogeneity and adapting to standards and tools supported by the W3C should be the best solution. It is therefore recommended that - although most of the semantic web standards are not technologically refined for commercial applications at present - all individual DL developments should be checked for their adaptability to the W3C standards of the semantic web. Originality/value - A unique conceptual analysis of the parallel developments emanating from the digital library and semantic web communities.
    Footnote
    Beitrag eines Themenheftes "Digital libraries and the semantic web: context, applications and research".
  10. Si, L.: Encoding formats and consideration of requirements for mapping (2007) 0.02
    0.018424368 = product of:
      0.04606092 = sum of:
        0.03261943 = weight(_text_:system in 540) [ClassicSimilarity], result of:
          0.03261943 = score(doc=540,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.2435858 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0546875 = fieldNorm(doc=540)
        0.013441487 = product of:
          0.04032446 = sum of:
            0.04032446 = weight(_text_:22 in 540) [ClassicSimilarity], result of:
              0.04032446 = score(doc=540,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.2708308 = fieldWeight in 540, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=540)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    With the increasing requirement of establishing semantic mappings between different vocabularies, further development of these encoding formats is becoming more and more important. For this reason, four types of knowledge representation formats were assessed:MARC21 for Classification Data in XML, Zthes XML Schema, XTM(XML Topic Map), and SKOS (Simple Knowledge Organisation System). This paper explores the potential of adapting these representation formats to support different semantic mapping methods, and discusses the implication of extending them to represent more complex KOS.
    Date
    26.12.2011 13:22:27
  11. Si, L.E.; O'Brien, A.; Probets, S.: Integration of distributed terminology resources to facilitate subject cross-browsing for library portal systems (2009) 0.02
    0.017020667 = product of:
      0.042551666 = sum of:
        0.032950602 = weight(_text_:system in 3628) [ClassicSimilarity], result of:
          0.032950602 = score(doc=3628,freq=4.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.24605882 = fieldWeight in 3628, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3628)
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 3628) [ClassicSimilarity], result of:
              0.028803186 = score(doc=3628,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 3628, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3628)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Purpose: To develop a prototype middleware framework between different terminology resources in order to provide a subject cross-browsing service for library portal systems. Design/methodology/approach: Nine terminology experts were interviewed to collect appropriate knowledge to support the development of a theoretical framework for the research. Based on this, a simplified software-based prototype system was constructed incorporating the knowledge acquired. The prototype involved mappings between the computer science schedule of the Dewey Decimal Classification (which acted as a spine) and two controlled vocabularies UKAT and ACM Computing Classification. Subsequently, six further experts in the field were invited to evaluate the prototype system and provide feedback to improve the framework. Findings: The major findings showed that given the large variety of terminology resources distributed on the web, the proposed middleware service is essential to integrate technically and semantically the different terminology resources in order to facilitate subject cross-browsing. A set of recommendations are also made outlining the important approaches and features that support such a cross browsing middleware service.
    Content
    This paper is a pre-print version presented at the ISKO UK 2009 conference, 22-23 June, prior to peer review and editing. For published proceedings see special issue of Aslib Proceedings journal.
  12. Hoekstra, R.: BestMap: context-aware SKOS vocabulary mappings in OWL 2 (2009) 0.02
    0.01597715 = product of:
      0.07988574 = sum of:
        0.07988574 = weight(_text_:context in 1574) [ClassicSimilarity], result of:
          0.07988574 = score(doc=1574,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.4533211 = fieldWeight in 1574, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1574)
      0.2 = coord(1/5)
    
    Abstract
    This paper describes an approach to SKOS vocabulary mapping that takes into account the context in which vocabulary terms are used in annotations. The standard vocabulary mapping properties in SKOS only allow for binary mappings between concepts. In the BestMap ontology, annotated resources are the contexts in which annotations coincide and allow for a more fine grained control over when mappings hold. A mapping between two vocabularies is defined as a class that groups descriptions of a resource. We use the OWL 2 features for property chains, disjoint properties, union, intersection and negation together with careful use of equivalence and subsumption to specify these mappings.
  13. Hoffmann, P.; Médini and , L.; Ghodous, P.: Using context to improve semantic interoperability (2006) 0.02
    0.01597715 = product of:
      0.07988574 = sum of:
        0.07988574 = weight(_text_:context in 4434) [ClassicSimilarity], result of:
          0.07988574 = score(doc=4434,freq=4.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.4533211 = fieldWeight in 4434, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4434)
      0.2 = coord(1/5)
    
    Abstract
    This paper presents an approach to enhance interoperability between heterogeneous ontologies. It consists in adapting the ranking of concepts to the final users and their work context. The computations are based on an upper domain ontology, a task hierarchy and a user profile. As prerequisites, OWL ontologie have to be given, and an articulation ontology has to be built.
  14. Mayr, P.; Petras, V.: Cross-concordances : terminology mapping and its effectiveness for information retrieval (2008) 0.02
    0.015834149 = product of:
      0.03958537 = sum of:
        0.027959513 = weight(_text_:system in 2323) [ClassicSimilarity], result of:
          0.027959513 = score(doc=2323,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 2323, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2323)
        0.011625858 = product of:
          0.034877572 = sum of:
            0.034877572 = weight(_text_:29 in 2323) [ClassicSimilarity], result of:
              0.034877572 = score(doc=2323,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.23319192 = fieldWeight in 2323, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2323)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    The German Federal Ministry for Education and Research funded a major terminology mapping initiative, which found its conclusion in 2007. The task of this terminology mapping initiative was to organize, create and manage 'cross-concordances' between controlled vocabularies (thesauri, classification systems, subject heading lists) centred around the social sciences but quickly extending to other subject areas. 64 crosswalks with more than 500,000 relations were established. In the final phase of the project, a major evaluation effort to test and measure the effectiveness of the vocabulary mappings in an information system environment was conducted. The paper reports on the cross-concordance work and evaluation results.
    Date
    26.12.2011 13:33:29
  15. Naudet, Y.; Latour, T.; Chen, D.: ¬A Systemic approach to Interoperability formalization (2009) 0.02
    0.015834149 = product of:
      0.03958537 = sum of:
        0.027959513 = weight(_text_:system in 2740) [ClassicSimilarity], result of:
          0.027959513 = score(doc=2740,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.20878783 = fieldWeight in 2740, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.046875 = fieldNorm(doc=2740)
        0.011625858 = product of:
          0.034877572 = sum of:
            0.034877572 = weight(_text_:29 in 2740) [ClassicSimilarity], result of:
              0.034877572 = score(doc=2740,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.23319192 = fieldWeight in 2740, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2740)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    With a first version developed last year, the Ontology of Interoperability (OoI) aims at formally describing concepts relating to problems and solutions in the domain of interoperability. From the beginning, the OoI has its foundations in the systemic theory and addresses interoperability from the general point of view of a system, whether it is composed by other systems (systems-of-systems) or not. In this paper, we present the last OoI focusing on the systemic approach. We then integrate a classification of interoperability knowledge provided by the Framework for Enterprise Interoperability. This way, we contextualize the OoI with a specific vocabulary to the enterprise domain, where solutions to interoperability problems are characterized according to interoperability approaches defined in the ISO 14258 and both solutions and problems can be localized into enterprises levels and characterized by interoperability levels, as defined in the European Interoperability Framework.
    Date
    29. 1.2016 18:48:14
  16. Vetere, G.; Lenzerini, M.: Models for semantic interoperability in service-oriented architectures (2005) 0.02
    0.015757065 = product of:
      0.07878532 = sum of:
        0.07878532 = product of:
          0.23635596 = sum of:
            0.23635596 = weight(_text_:3a in 306) [ClassicSimilarity], result of:
              0.23635596 = score(doc=306,freq=2.0), product of:
                0.3604703 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.04251826 = queryNorm
                0.65568775 = fieldWeight in 306, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=306)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Content
    Vgl.: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5386707&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5386707.
  17. Vizine-Goetz, D.; Houghton, A.; Childress, E.: Web services for controlled vocabularies (2006) 0.01
    0.013195123 = product of:
      0.032987807 = sum of:
        0.023299592 = weight(_text_:system in 1171) [ClassicSimilarity], result of:
          0.023299592 = score(doc=1171,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 1171, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1171)
        0.009688215 = product of:
          0.029064644 = sum of:
            0.029064644 = weight(_text_:29 in 1171) [ClassicSimilarity], result of:
              0.029064644 = score(doc=1171,freq=2.0), product of:
                0.14956595 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19432661 = fieldWeight in 1171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1171)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Amid the debates about whether folksonomies will supplant controlled vocabularies and whether the Library of Congress Subject Headings (LCSH) and Dewey Decimal Classification (DDC) system have outlived their usefulness, libraries, museums and other organizations continue to require efficient, effective access to controlled vocabularies for creating consistent metadata for their collections . In this article, we present an approach for using Web services to interact with controlled vocabularies. Services are implemented within a service-oriented architecture (SOA) framework. SOA is an approach to distributed computing where services are loosely coupled and discoverable on the network. A set of experimental services for controlled vocabularies is provided through the Microsoft Office (MS) Research task pane (a small window or sidebar that opens up next to Internet Explorer (IE) and other Microsoft Office applications). The research task pane is a built-in feature of IE when MS Office 2003 is loaded. The research pane enables a user to take advantage of a number of research and reference services accessible over the Internet. Web browsers, such as Mozilla Firefox and Opera, also provide sidebars which could be used to deliver similar, loosely-coupled Web services.
    Date
    28.12.2008 17:54:29
  18. Garcia Marco, F.J.: Compatibility & heterogeneity in knowledge organization : some reflections around a case study in the field of consumer information (2008) 0.01
    0.013160261 = product of:
      0.032900654 = sum of:
        0.023299592 = weight(_text_:system in 1678) [ClassicSimilarity], result of:
          0.023299592 = score(doc=1678,freq=2.0), product of:
            0.13391352 = queryWeight, product of:
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.04251826 = queryNorm
            0.17398985 = fieldWeight in 1678, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1495528 = idf(docFreq=5152, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1678)
        0.009601062 = product of:
          0.028803186 = sum of:
            0.028803186 = weight(_text_:22 in 1678) [ClassicSimilarity], result of:
              0.028803186 = score(doc=1678,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.19345059 = fieldWeight in 1678, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1678)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    A case study in compatibility and heterogeneity of knowledge organization (KO) systems and processes is presented. It is based in the experience of the author in the field of information for consumer protection, a good example of the emerging transdisciplinary applied social sciences. The activities and knowledge organization problems and solutions of the Aragonian Consumers' Information and Documentation Centre are described and analyzed. Six assertions can be concluded: a) heterogeneity and compatibility are certainly an inherent problem in knowledge organization and also in practical domains; b) knowledge organization is also a social task, not only a lögical one; c) knowledge organization is affected by economical and efficiency considerations; d) knowledge organization is at the heart of Knowledge Management; e) identifying and maintaining the focus in interdisciplinary fields is a must; f the different knowledge organization tools of a institution must be considered as an integrated system, pursuing a unifying model.
    Date
    16. 3.2008 18:22:50
  19. Gödert, W.: Ontological spine, localization and multilingual access : some reflections and a proposal (2008) 0.01
    0.01129755 = product of:
      0.05648775 = sum of:
        0.05648775 = weight(_text_:context in 4334) [ClassicSimilarity], result of:
          0.05648775 = score(doc=4334,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.32054642 = fieldWeight in 4334, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4334)
      0.2 = coord(1/5)
    
    Abstract
    In this paper the following problem is discussed: Which possibilities exist to integrate localized knowledge into knowledge structures like classification systems or other documentary languages for the design of OPACs and information systems? It is proposed to combine a de-localized classificatory structure - best describes as 'ontological spine' - with multilingual semantic networks. Each of these networks should represent the respective localized knowledge along an extended set of typed semantic relations serving as entry points vocabulary as well as a semantic basis for navigational purposes within the localized knowledge context. The spine should enable a link between well-known and not well-known knowledge structures.
  20. Nicholson, D.; Wake, S.: HILT: subject retrieval in a distributed environment (2003) 0.01
    0.009683615 = product of:
      0.04841807 = sum of:
        0.04841807 = weight(_text_:context in 3810) [ClassicSimilarity], result of:
          0.04841807 = score(doc=3810,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 3810, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=3810)
      0.2 = coord(1/5)
    
    Abstract
    The HILT High Level Thesaurus Project aims to study and report an the problern of cross-searching and browsing by subject across a range of communities, services, and service or resource types in the UK given the wide range of subject schemes and associated practices in place in the communities in question (Libraries, Museums, Archives, and Internet Services) and taking the international context into consideration. The paper reports an progess to date, focusing particularly an the inter-community consensus reached at a recent Stakeholder Workshop.

Languages

  • e 48
  • d 7

Types

  • a 34
  • el 23
  • x 2
  • r 1
  • More… Less…