Search (9 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Citation indexing"
  1. Gorraiz, J.; Purnell, P.J.; Glänzel, W.: Opportunities for and limitations of the Book Citation Index (2013) 0.05
    0.052019693 = product of:
      0.13004923 = sum of:
        0.040348392 = weight(_text_:context in 966) [ClassicSimilarity], result of:
          0.040348392 = score(doc=966,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.22896172 = fieldWeight in 966, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.0390625 = fieldNorm(doc=966)
        0.08970083 = weight(_text_:index in 966) [ClassicSimilarity], result of:
          0.08970083 = score(doc=966,freq=8.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.48279524 = fieldWeight in 966, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=966)
      0.4 = coord(2/5)
    
    Abstract
    This article offers important background information about a new product, the Book Citation Index (BKCI), launched in 2011 by Thomson Reuters. Information is illustrated by some new facts concerning The BKCI's use in bibliometrics, coverage analysis, and a series of idiosyncrasies worthy of further discussion. The BKCI was launched primarily to assist researchers identify useful and relevant research that was previously invisible to them, owing to the lack of significant book content in citation indexes such as the Web of Science. So far, the content of 33,000 books has been added to the desktops of the global research community, the majority in the arts, humanities, and social sciences fields. Initial analyses of the data from The BKCI have indicated that The BKCI, in its current version, should not be used for bibliometric or evaluative purposes. The most significant limitations to this potential application are the high share of publications without address information, the inflation of publication counts, the lack of cumulative citation counts from different hierarchical levels, and inconsistency in citation counts between the cited reference search and the book citation index. However, The BKCI is a first step toward creating a reliable and necessary citation data source for monographs - a very challenging issue, because, unlike journals and conference proceedings, books have specific requirements, and several problems emerge not only in the context of subject classification, but also in their role as cited publications and in citing publications.
    Object
    Book Citation Index
  2. Leydesdorff, L.; Salah, A.A.A.: Maps on the basis of the Arts & Humanities Citation Index : the journals Leonardo and Art Journal versus "digital humanities" as a topic (2010) 0.02
    0.024069263 = product of:
      0.12034631 = sum of:
        0.12034631 = weight(_text_:index in 3436) [ClassicSimilarity], result of:
          0.12034631 = score(doc=3436,freq=10.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.64773786 = fieldWeight in 3436, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=3436)
      0.2 = coord(1/5)
    
    Abstract
    The possibilities of using the Arts & Humanities Citation Index (A&HCI) for journal mapping have not been sufficiently recognized because of the absence of a Journal Citations Report (JCR) for this database. A quasi-JCR for the A&HCI ([2008]) was constructed from the data contained in the Web of Science and is used for the evaluation of two journals as examples: Leonardo and Art Journal. The maps on the basis of the aggregated journal-journal citations within this domain can be compared with maps including references to journals in the Science Citation Index and Social Science Citation Index. Art journals are cited by (social) science journals more than by other art journals, but these journals draw upon one another in terms of their own references. This cultural impact in terms of being cited is not found when documents with a topic such as digital humanities are analyzed. This community of practice functions more as an intellectual organizer than a journal.
    Object
    Arts and Humanities Citation Index
  3. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.02
    0.02397574 = product of:
      0.059939347 = sum of:
        0.04841807 = weight(_text_:context in 1521) [ClassicSimilarity], result of:
          0.04841807 = score(doc=1521,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 1521, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=1521)
        0.011521274 = product of:
          0.03456382 = sum of:
            0.03456382 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.03456382 = score(doc=1521,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Traditional citation analysis has been widely applied to detect patterns of scientific collaboration, map the landscapes of scholarly disciplines, assess the impact of research outputs, and observe knowledge transfer across domains. It is, however, limited, as it assumes all citations are of similar value and weights each equally. Content-based citation analysis (CCA) addresses a citation's value by interpreting each one based on its context at both the syntactic and semantic levels. This paper provides a comprehensive overview of CAA research in terms of its theoretical foundations, methodical approaches, and example applications. In addition, we highlight how increased computational capabilities and publicly available full-text resources have opened this area of research to vast possibilities, which enable deeper citation analysis, more accurate citation prediction, and increased knowledge discovery.
    Date
    22. 8.2014 16:52:04
  4. Robinson-García, N.; Jiménez-Contreras, E.; Torres-Salinas, D.: Analyzing data citation practices using the data citation index : a study of backup strategies of end users (2016) 0.01
    0.012685614 = product of:
      0.06342807 = sum of:
        0.06342807 = weight(_text_:index in 3225) [ClassicSimilarity], result of:
          0.06342807 = score(doc=3225,freq=4.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.3413878 = fieldWeight in 3225, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3225)
      0.2 = coord(1/5)
    
    Abstract
    We present an analysis of data citation practices based on the Data Citation Index (DCI) (Thomson Reuters). This database launched in 2012 links data sets and data studies with citations received from the other citation indexes. The DCI harvests citations to research data from papers indexed in the Web of Science. It relies on the information provided by the data repository. The findings of this study show that data citation practices are far from common in most research fields. Some differences have been reported on the way researchers cite data: Although in the areas of science and engineering & technology data sets were the most cited, in the social sciences and arts & humanities data studies play a greater role. A total of 88.1% of the records have received no citation, but some repositories show very low uncitedness rates. Although data citation practices are rare in most fields, they have expanded in disciplines such as crystallography and genomics. We conclude by emphasizing the role that the DCI could play in encouraging the consistent, standardized citation of research data-a role that would enhance their value as a means of following the research process from data collection to publication.
  5. Leydesdorff, L.; Opthof, T.: Citation analysis with medical subject Headings (MeSH) using the Web of Knowledge : a new routine (2013) 0.01
    0.0107641 = product of:
      0.0538205 = sum of:
        0.0538205 = weight(_text_:index in 943) [ClassicSimilarity], result of:
          0.0538205 = score(doc=943,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.28967714 = fieldWeight in 943, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=943)
      0.2 = coord(1/5)
    
    Abstract
    Citation analysis of documents retrieved from the Medline database (at the Web of Knowledge) has been possible only on a case-by-case basis. A technique is presented here for citation analysis in batch mode using both Medical Subject Headings (MeSH) at the Web of Knowledge and the Science Citation Index at the Web of Science (WoS). This freeware routine is applied to the case of "Brugada Syndrome," a specific disease and field of research (since 1992). The journals containing these publications, for example, are attributed to WoS categories other than "cardiac and cardiovascular systems", perhaps because of the possibility of genetic testing for this syndrome in the clinic. With this routine, all the instruments available for citation analysis can now be used on the basis of MeSH terms. Other options for crossing between Medline, WoS, and Scopus are also reviewed.
  6. Ardanuy, J.: Sixty years of citation analysis studies in the humanities (1951-2010) (2013) 0.01
    0.0107641 = product of:
      0.0538205 = sum of:
        0.0538205 = weight(_text_:index in 1015) [ClassicSimilarity], result of:
          0.0538205 = score(doc=1015,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.28967714 = fieldWeight in 1015, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.046875 = fieldNorm(doc=1015)
      0.2 = coord(1/5)
    
    Abstract
    This article provides an overview of studies that have used citation analysis in the field of humanities in the period 1951 to 2010. The work is based on an exhaustive search in databases-particularly those in library and information science-and on citation chaining from papers on citation analysis. The results confirm that use of this technique in the humanities is limited, and although there was some growth in the 1970s and 1980s, it has stagnated in the past 2 decades. Most of the work has been done by research staff, but almost one third involves library staff, and 15% has been done by students. The study also showed that less than one fourth of the works used a citation database such as the Arts & Humanities Citation Index and that 21% of the works were in publications other than library and information science journals. The United States has the greatest output, and English is by far the most frequently used language, and 13.9% of the studies are in other languages.
  7. Zhang, G.; Ding, Y.; Milojevic, S.: Citation content analysis (CCA) : a framework for syntactic and semantic analysis of citation content (2013) 0.01
    0.009683615 = product of:
      0.04841807 = sum of:
        0.04841807 = weight(_text_:context in 975) [ClassicSimilarity], result of:
          0.04841807 = score(doc=975,freq=2.0), product of:
            0.17622331 = queryWeight, product of:
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.04251826 = queryNorm
            0.27475408 = fieldWeight in 975, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.14465 = idf(docFreq=1904, maxDocs=44218)
              0.046875 = fieldNorm(doc=975)
      0.2 = coord(1/5)
    
    Abstract
    This study proposes a new framework for citation content analysis (CCA), for syntactic and semantic analysis of citation content that can be used to better analyze the rich sociocultural context of research behavior. This framework could be considered the next generation of citation analysis. The authors briefly review the history and features of content analysis in traditional social sciences and its previous application in library and information science (LIS). Based on critical discussion of the theoretical necessity of a new method as well as the limits of citation analysis, the nature and purposes of CCA are discussed, and potential procedures to conduct CCA, including principles to identify the reference scope, a two-dimensional (citing and cited) and two-module (syntactic and semantic) codebook, are provided and described. Future work and implications are also suggested.
  8. Marx, W.; Bornmann, L.; Cardona, M.: Reference standards and reference multipliers for the comparison of the citation impact of papers published in different time periods (2010) 0.01
    0.008970084 = product of:
      0.044850416 = sum of:
        0.044850416 = weight(_text_:index in 3998) [ClassicSimilarity], result of:
          0.044850416 = score(doc=3998,freq=2.0), product of:
            0.18579477 = queryWeight, product of:
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.04251826 = queryNorm
            0.24139762 = fieldWeight in 3998, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.369764 = idf(docFreq=1520, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3998)
      0.2 = coord(1/5)
    
    Abstract
    In this study, reference standards and reference multipliers are suggested as a means to compare the citation impact of earlier research publications in physics (from the period of "Little Science" in the early 20th century) with that of contemporary papers (from the period of "Big Science," beginning around 1960). For the development of time-specific reference standards, the authors determined (a) the mean citation rates of papers in selected physics journals as well as (b) the mean citation rates of all papers in physics published in 1900 (Little Science) and in 2000 (Big Science); this was accomplished by relying on the processes of field-specific standardization in bibliometry. For the sake of developing reference multipliers with which the citation impact of earlier papers can be adjusted to the citation impact of contemporary papers, they combined the reference standards calculated for 1900 and 2000 into their ratio. The use of reference multipliers is demonstrated by means of two examples involving the time adjusted h index values for Max Planck and Albert Einstein.
  9. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.00
    0.0030723398 = product of:
      0.015361699 = sum of:
        0.015361699 = product of:
          0.046085097 = sum of:
            0.046085097 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.046085097 = score(doc=1149,freq=2.0), product of:
                0.1488917 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04251826 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    17.12.2013 11:02:22