Search (232 results, page 1 of 12)

  • × theme_ss:"Computerlinguistik"
  1. Rieger, F.: Lügende Computer (2023) 0.03
    0.033682965 = product of:
      0.056138273 = sum of:
        0.016892646 = product of:
          0.050677933 = sum of:
            0.050677933 = weight(_text_:f in 912) [ClassicSimilarity], result of:
              0.050677933 = score(doc=912,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.35229704 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.33333334 = coord(1/3)
        0.02620616 = weight(_text_:den in 912) [ClassicSimilarity], result of:
          0.02620616 = score(doc=912,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 912, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=912)
        0.013039465 = product of:
          0.039118394 = sum of:
            0.039118394 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.039118394 = score(doc=912,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.33333334 = coord(1/3)
      0.6 = coord(3/5)
    
    Abstract
    Wir leben gerade in einem kritischen Übergangs-Zeitalter zwischen Computern, auf die man sich halbwegs verlassen kann und den neuen "AI"-Systemen, die driften, halluzinieren, lügen und fabulieren können. Schon heute ist die Komplexität moderner Softwaresysteme so hoch, dass es kühn wäre, von striktem Determinismus zu sprechen, jedoch sind auch komplexe Algorithmen darauf angelegt, bei gleichen Eingabedaten gleiche Ergebnisse zu produzieren. Eine Ausnahme sind heute schon Algorithmen, die Zufallszahlen als Teil ihrer Eingabeparameter beinhalten oder neuronale Netze.
    Date
    16. 3.2023 19:22:55
  2. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.03
    0.026840514 = product of:
      0.067101285 = sum of:
        0.057321683 = product of:
          0.17196505 = sum of:
            0.17196505 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.17196505 = score(doc=562,freq=2.0), product of:
                0.30597782 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.036090754 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.009779599 = product of:
          0.029338794 = sum of:
            0.029338794 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
              0.029338794 = score(doc=562,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.23214069 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  3. Rösener, C.: ¬Die Stecknadel im Heuhaufen : Natürlichsprachlicher Zugang zu Volltextdatenbanken (2005) 0.02
    0.022632264 = product of:
      0.037720438 = sum of:
        0.008446323 = product of:
          0.025338966 = sum of:
            0.025338966 = weight(_text_:f in 548) [ClassicSimilarity], result of:
              0.025338966 = score(doc=548,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.17614852 = fieldWeight in 548, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.03125 = fieldNorm(doc=548)
          0.33333334 = coord(1/3)
        0.0226952 = weight(_text_:den in 548) [ClassicSimilarity], result of:
          0.0226952 = score(doc=548,freq=6.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.21939759 = fieldWeight in 548, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.03125 = fieldNorm(doc=548)
        0.006578914 = product of:
          0.01973674 = sum of:
            0.01973674 = weight(_text_:29 in 548) [ClassicSimilarity], result of:
              0.01973674 = score(doc=548,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.15546128 = fieldWeight in 548, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=548)
          0.33333334 = coord(1/3)
      0.6 = coord(3/5)
    
    Abstract
    Die Möglichkeiten, die der heutigen Informations- und Wissensgesellschaft für die Beschaffung und den Austausch von Information zur Verfügung stehen, haben kurioserweise gleichzeitig ein immer akuter werdendes, neues Problem geschaffen: Es wird für jeden Einzelnen immer schwieriger, aus der gewaltigen Fülle der angebotenen Informationen die tatsächlich relevanten zu selektieren. Diese Arbeit untersucht die Möglichkeit, mit Hilfe von natürlichsprachlichen Schnittstellen den Zugang des Informationssuchenden zu Volltextdatenbanken zu verbessern. Dabei werden zunächst die wissenschaftlichen Fragestellungen ausführlich behandelt. Anschließend beschreibt der Autor verschiedene Lösungsansätze und stellt anhand einer natürlichsprachlichen Schnittstelle für den Brockhaus Multimedial 2004 deren erfolgreiche Implementierung vor
    Content
    5: Interaktion 5.1 Frage-Antwort- bzw. Dialogsysteme: Forschungen und Projekte 5.2 Darstellung und Visualisierung von Wissen 5.3 Das Dialogsystem im Rahmen des LeWi-Projektes 5.4 Ergebnisdarstellung und Antwortpräsentation im LeWi-Kontext 6: Testumgebungen und -ergebnisse 7: Ergebnisse und Ausblick 7.1 Ausgangssituation 7.2 Schlussfolgerungen 7.3 Ausblick Anhang A Auszüge aus der Grob- bzw. Feinklassifikation des BMM Anhang B MPRO - Formale Beschreibung der wichtigsten Merkmale ... Anhang C Fragentypologie mit Beispielsätzen (Auszug) Anhang D Semantische Merkmale im morphologischen Lexikon (Auszug) Anhang E Regelbeispiele für die Fragentypzuweisung Anhang F Aufstellung der möglichen Suchen im LeWi-Dialogmodul (Auszug) Anhang G Vollständiger Dialogbaum zu Beginn des Projektes Anhang H Statuszustände zur Ermittlung der Folgefragen (Auszug)
    Date
    29. 3.2009 11:11:45
  4. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.02
    0.020450454 = product of:
      0.051126134 = sum of:
        0.0397166 = weight(_text_:den in 4184) [ClassicSimilarity], result of:
          0.0397166 = score(doc=4184,freq=6.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.3839458 = fieldWeight in 4184, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4184)
        0.011409531 = product of:
          0.034228593 = sum of:
            0.034228593 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.034228593 = score(doc=4184,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Das Medium Internet ist im Wandel, und mit ihm ändern sich seine Publikations- und Rezeptionsbedingungen. Welche Chancen bieten die momentan parallel diskutierten Zukunftsentwürfe von Social Web und Semantic Web? Zur Beantwortung dieser Frage beschäftigt sich der Beitrag mit den Grundlagen beider Modelle unter den Aspekten Anwendungsbezug und Technologie, beleuchtet darüber hinaus jedoch auch deren Unzulänglichkeiten sowie den Mehrwert einer mediengerechten Kombination. Am Beispiel des grammatischen Online-Informationssystems grammis wird eine Strategie zur integrativen Nutzung der jeweiligen Stärken skizziert.
    Date
    22. 1.2011 10:38:28
  5. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.02
    0.020097965 = product of:
      0.033496607 = sum of:
        0.008446323 = product of:
          0.025338966 = sum of:
            0.025338966 = weight(_text_:f in 4217) [ClassicSimilarity], result of:
              0.025338966 = score(doc=4217,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.17614852 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.33333334 = coord(1/3)
        0.018530553 = weight(_text_:den in 4217) [ClassicSimilarity], result of:
          0.018530553 = score(doc=4217,freq=4.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.17913738 = fieldWeight in 4217, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.03125 = fieldNorm(doc=4217)
        0.0065197325 = product of:
          0.019559197 = sum of:
            0.019559197 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.019559197 = score(doc=4217,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.33333334 = coord(1/3)
      0.6 = coord(3/5)
    
    Abstract
    Jetzt scheint es allmählich ans Eingemachte zu gehen. Ein von der chinesischen Alibaba-Gruppe entwickelte KI-Programm konnte erstmals Menschen in der Beantwortung von Fragen und dem Verständnis von Text schlagen. Die chinesische Regierung will das Land führend in der Entwicklung von Künstlicher Intelligenz machen und hat dafür eine nationale Strategie aufgestellt. Dazu ernannte das Ministerium für Wissenschaft und Technik die Internetkonzerne Baidu, Alibaba und Tencent sowie iFlyTek zum ersten nationalen Team für die Entwicklung der KI-Technik der nächsten Generation. Baidu ist zuständig für die Entwicklung autonomer Fahrzeuge, Alibaba für die Entwicklung von Clouds für "city brains" (Smart Cities sollen sich an ihre Einwohner und ihre Umgebung anpassen), Tencent für die Enwicklung von Computervision für medizinische Anwendungen und iFlyTec für "Stimmenintelligenz". Die vier Konzerne sollen offene Plattformen herstellen, die auch andere Firmen und Start-ups verwenden können. Überdies wird bei Peking für eine Milliarde US-Dollar ein Technologiepark für die Entwicklung von KI gebaut. Dabei geht es selbstverständlich nicht nur um zivile Anwendungen, sondern auch militärische. Noch gibt es in den USA mehr KI-Firmen, aber China liegt bereits an zweiter Stelle. Das Pentagon ist beunruhigt. Offenbar kommt China rasch vorwärts. Ende 2017 stellte die KI-Firma iFlyTek, die zunächst auf Stimmerkennung und digitale Assistenten spezialisiert war, einen Roboter vor, der den schriftlichen Test der nationalen Medizinprüfung erfolgreich bestanden hatte. Der Roboter war nicht nur mit immensem Wissen aus 53 medizinischen Lehrbüchern, 2 Millionen medizinischen Aufzeichnungen und 400.000 medizinischen Texten und Berichten gefüttert worden, er soll von Medizinexperten klinische Erfahrungen und Falldiagnosen übernommen haben. Eingesetzt werden soll er, in China herrscht vor allem auf dem Land, Ärztemangel, als Helfer, der mit der automatischen Auswertung von Patientendaten eine erste Diagnose erstellt und ansonsten Ärzten mit Vorschlägen zur Seite stehen.
    Date
    22. 1.2018 11:32:44
  6. Bischoff, M.: Was steckt hinter ChatGTP & Co? (2023) 0.02
    0.020087574 = product of:
      0.050218932 = sum of:
        0.037061106 = weight(_text_:den in 1013) [ClassicSimilarity], result of:
          0.037061106 = score(doc=1013,freq=4.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.35827476 = fieldWeight in 1013, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=1013)
        0.013157828 = product of:
          0.03947348 = sum of:
            0.03947348 = weight(_text_:29 in 1013) [ClassicSimilarity], result of:
              0.03947348 = score(doc=1013,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.31092256 = fieldWeight in 1013, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1013)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Erste Sprachmodelle gab es schon in den 1950er Jahren. Doch erst durch den massiven Zuwachs an Computerleistung sind KI-Technologien wie DeepL und GPT heute in der Lage, menschliche Sprache praktisch fehlerfrei zu verarbeiten und zu produzieren. Entscheidend dabei war die Imitation einer ganz besonderen Fähigkeit unseres Gehirns.
    Date
    12. 4.2023 20:29:54
  7. Snajder, J.: Distributional semantics of multi-word expressions (2013) 0.02
    0.019681994 = product of:
      0.049204983 = sum of:
        0.0327577 = weight(_text_:den in 2868) [ClassicSimilarity], result of:
          0.0327577 = score(doc=2868,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.31667316 = fieldWeight in 2868, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.078125 = fieldNorm(doc=2868)
        0.016447285 = product of:
          0.049341854 = sum of:
            0.049341854 = weight(_text_:29 in 2868) [ClassicSimilarity], result of:
              0.049341854 = score(doc=2868,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.38865322 = fieldWeight in 2868, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2868)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Content
    Folien einer Präsentation anlässlich COST Action IC1207 PARSEME Meeting, Warsaw, September 16, 2013. Vgl. den Beitrag: Snajder, J., P. Almic: Modeling semantic compositionality of Croatian multiword expressions. In: Informatica. 39(2015) H.3, S.301-309.
    Date
    29. 4.2016 12:04:50
  8. Sienel, J.; Weiss, M.; Laube, M.: Sprachtechnologien für die Informationsgesellschaft des 21. Jahrhunderts (2000) 0.02
    0.019307798 = product of:
      0.04826949 = sum of:
        0.040119827 = weight(_text_:den in 5557) [ClassicSimilarity], result of:
          0.040119827 = score(doc=5557,freq=12.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.38784382 = fieldWeight in 5557, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5557)
        0.008149666 = product of:
          0.024448996 = sum of:
            0.024448996 = weight(_text_:22 in 5557) [ClassicSimilarity], result of:
              0.024448996 = score(doc=5557,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.19345059 = fieldWeight in 5557, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5557)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    In den vergangenen Jahren hat sich die Entwicklung, Sprache als Schnittstelle zwischen Mensch und Maschine einzusetzen, zunehmend an Bedeutung gewonnen. Die steigende Verarbeitungsgeschwindigkeit der Prozessoren ermöglicht es heute, selbst sehr komplexe Aufgaben wie Diktiersysteme auf handelsüblichen PCs verfügbar zu machen. Ebenso haben sich Verfahren weiterentwickelt und die Erkennungsleistung konnte gesteigert werden. Insbesondere im mobilen Umfeld wird sich Sprache als notwendig erweisen, um den Widerspruch, immer komplexere Funktionalität in immer kleineren und leichteren Terminals unterzubringen, aufzulösen. In diesem Umfeld können auch andere Modalitäten, wie Handschrift oder Gestik, integriert werden. Eine der Hauptanwendungen in mobiler Umgebung wird der Zugriff auf das Internet werden: um schnell und umfassend zu den benötigten Information zu gelangen, können intelligente Agenten eine mögliche Hilfe darstellen. Sie sind in Lage, die Informationen bezüglich ihrer Relevanz für den Nutzer zu beurteilen und fassen die Inhalte zusammen, die sich auf den kleinen Displays, oder akustisch wiedergeben lassen. Ist das gefundene Dokument in einer dein Benutzer fremden Sprache verfaßt, kann es automatisch übersetzt werden. Natürlich werden die benötigten Technologien nicht alle in einem Endgerät untergebracht werden können, deshalb wird bereits heute in Standardisierungsgremien untersucht, wie verteilte Architekturen helfen können, den Zugriff auf Informationen immer, überall und jedem verfügbaren Endgerät zugänglich zu machen. Das vom BMWi geförderte Projekt "Mobiler Multimedia-Arbeitsplatz der Zukunft" will diesen Ansatz verfolgen. Dabei werden auch die sozialen und arbeitsrechtlichen Aspekte untersucht
    Date
    26.12.2000 13:22:17
  9. Thomas, I.S.; Wang, J.; GPT-3: Was euch zu Menschen macht : Antworten einer künstlichen Intelligenz auf die großen Fragen des Lebens (2022) 0.02
    0.017564466 = product of:
      0.043911166 = sum of:
        0.034042798 = weight(_text_:den in 878) [ClassicSimilarity], result of:
          0.034042798 = score(doc=878,freq=6.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.32909638 = fieldWeight in 878, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.046875 = fieldNorm(doc=878)
        0.00986837 = product of:
          0.029605111 = sum of:
            0.029605111 = weight(_text_:29 in 878) [ClassicSimilarity], result of:
              0.029605111 = score(doc=878,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.23319192 = fieldWeight in 878, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=878)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Das erste durch KI verfasste Weisheitsbuch. »Die Künstliche Intelligenz sieht den Menschen, wie er ist. Es gibt für sie keinen Gott, keine Rituale, keinen Himmel, keine Hölle, keine Engel. Es gibt für sie nur empfindsame Wesen.« GPT-3. Dieses Buch enthält Weisheitstexte, die durch die modernste KI im Bereich der Spracherkennung verfasst wurden. Es ist die GPT-3, die durch die Technikerin Jasmine Wang gesteuert wird. Die originären Texte von GPT-3 werden von dem international bekannten Dichter Iain S. Thomas kuratiert. Die Basis von GPT-3 reicht von den Weisheitsbücher der Menschheit bis hin zu modernen Texten. GPT-3 antwortet auf Fragen wie: Was macht den Mensch zum Menschen? Was bedeutet es zu lieben? Wie führen wir ein erfülltes Leben? etc. und ist in der Lage, eigene Sätze zu kreieren. So wird eine zeitgenössische und noch nie dagewesene Erforschung von Sinn und Spiritualität geschaffen, die zu einem neuen Verständnis dessen inspiriert, was uns zu Menschen macht.
    Date
    7. 1.2023 18:41:29
  10. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.02
    0.01569825 = product of:
      0.039245624 = sum of:
        0.02620616 = weight(_text_:den in 835) [ClassicSimilarity], result of:
          0.02620616 = score(doc=835,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 835, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=835)
        0.013039465 = product of:
          0.039118394 = sum of:
            0.039118394 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.039118394 = score(doc=835,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Das Forschungsunternehmen OpenAI hat ein neues Sprachmodell vorgestellt: ChatGPT. Es hat einen regelrechten Hype ausgelöst: Viele Nutzer haben Beispiele in den sozialen Medien gepostet, die die vielfältigen Fähigkeiten demonstrieren. Das darf aber nicht darüber hinwegtäuschen, dass auch ChatGPT einige gefährliche Schwächen hat, die für Sprachmodelle typisch sind.
    Date
    29.12.2022 18:22:55
  11. Rötzer, F.: Kann KI mit KI generierte Texte erkennen? (2019) 0.02
    0.015084581 = product of:
      0.037711453 = sum of:
        0.014781064 = product of:
          0.044343192 = sum of:
            0.044343192 = weight(_text_:f in 3977) [ClassicSimilarity], result of:
              0.044343192 = score(doc=3977,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.3082599 = fieldWeight in 3977, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3977)
          0.33333334 = coord(1/3)
        0.02293039 = weight(_text_:den in 3977) [ClassicSimilarity], result of:
          0.02293039 = score(doc=3977,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.2216712 = fieldWeight in 3977, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3977)
      0.4 = coord(2/5)
    
    Abstract
    OpenAI hat einen Algorithmus zur Textgenerierung angeblich nicht vollständig veröffentlicht, weil er so gut sei und Missbrauch und Täuschung ermöglicht. Das u.a. von Elon Musk und Peter Thiel gegründete KI-Unternehmen OpenAI hatte im Februar erklärt, man habe den angeblich am weitesten fortgeschrittenen Algorithmus zur Sprachverarbeitung entwickelt. Der Algorithmus wurde lediglich anhand von 40 Gigabyte an Texten oder an 8 Millionen Webseiten trainiert, das nächste Wort in einem vorgegebenen Textausschnitt vorherzusagen. Damit könne man zusammenhängende, sinnvolle Texte erzeugen, die vielen Anforderungen genügen, zudem könne damit rudimentär Leseverständnis, Antworten auf Fragen, Zusammenfassungen und Übersetzungen erzeugt werden, ohne dies trainiert zu haben.
  12. Sünkler, S.; Kerkmann, F.; Schultheiß, S.: Ok Google . the end of search as we know it : sprachgesteuerte Websuche im Test (2018) 0.02
    0.015084581 = product of:
      0.037711453 = sum of:
        0.014781064 = product of:
          0.044343192 = sum of:
            0.044343192 = weight(_text_:f in 5626) [ClassicSimilarity], result of:
              0.044343192 = score(doc=5626,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.3082599 = fieldWeight in 5626, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5626)
          0.33333334 = coord(1/3)
        0.02293039 = weight(_text_:den in 5626) [ClassicSimilarity], result of:
          0.02293039 = score(doc=5626,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.2216712 = fieldWeight in 5626, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5626)
      0.4 = coord(2/5)
    
    Abstract
    Sprachsteuerungssysteme, die den Nutzer auf Zuruf unterstützen, werden im Zuge der Verbreitung von Smartphones und Lautsprechersystemen wie Amazon Echo oder Google Home zunehmend populär. Eine der zentralen Anwendungen dabei stellt die Suche in Websuchmaschinen dar. Wie aber funktioniert "googlen", wenn der Nutzer seine Suchanfrage nicht schreibt, sondern spricht? Dieser Frage ist ein Projektteam der HAW Hamburg nachgegangen und hat im Auftrag der Deutschen Telekom untersucht, wie effektiv, effizient und zufriedenstellend Google Now, Apple Siri, Microsoft Cortana sowie das Amazon Fire OS arbeiten. Ermittelt wurden Stärken und Schwächen der Systeme sowie Erfolgskriterien für eine hohe Gebrauchstauglichkeit. Diese Erkenntnisse mündeten in dem Prototyp einer optimalen Voice Web Search.
  13. Geißler, S.: Maschinelles Lernen und NLP : Reif für die industrielle Anwendung! (2019) 0.02
    0.01506568 = product of:
      0.0376642 = sum of:
        0.02779583 = weight(_text_:den in 3547) [ClassicSimilarity], result of:
          0.02779583 = score(doc=3547,freq=4.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.26870608 = fieldWeight in 3547, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.046875 = fieldNorm(doc=3547)
        0.00986837 = product of:
          0.029605111 = sum of:
            0.029605111 = weight(_text_:29 in 3547) [ClassicSimilarity], result of:
              0.029605111 = score(doc=3547,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.23319192 = fieldWeight in 3547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3547)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Anwendungen von maschinellen Lernverfahren (ML) haben in jüngster Zeit aufsehenerregende Durchbrüche bei einer ganzen Reihe von Aufgaben in der maschinellen Sprachverarbeitung (NLP) erzielt. Der Fokus vieler Arbeiten liegt hierbei in der Entwicklung immer besserer Modelle, während der Anteil der Aufgaben in praktischen Projekten, der sich nicht mit Modellbildung, sondern mit Themen wie Datenbereitstellung sowie Evaluierung, Wartung und Deployment von Modellen beschäftigt, oftmals noch nicht ausreichend Beachtung erfährt. Im Ergebnis fehlen gerade Unternehmen, die nicht die Möglichkeit haben, eigene Plattformen für den Einsatz von ML und NLP zu entwerfen, oft geeignete Werkzeuge und Best Practices. Es ist zeichnet sich ab, dass in den kommenden Monaten eine gerade diesen praktischen Fragen zugewandte Ingenieurssicht auf ML und ihren Einsatz im Unternehmen an Bedeutung gewinnen wird.
    Date
    2. 9.2019 19:29:24
  14. Wenzel, F.: Semantische Eingrenzung im Freitext-Retrieval auf der Basis morphologischer Segmentierungen (1980) 0.02
    0.015025238 = product of:
      0.037563093 = sum of:
        0.021115808 = product of:
          0.06334742 = sum of:
            0.06334742 = weight(_text_:f in 2037) [ClassicSimilarity], result of:
              0.06334742 = score(doc=2037,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.4403713 = fieldWeight in 2037, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2037)
          0.33333334 = coord(1/3)
        0.016447285 = product of:
          0.049341854 = sum of:
            0.049341854 = weight(_text_:29 in 2037) [ClassicSimilarity], result of:
              0.049341854 = score(doc=2037,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.38865322 = fieldWeight in 2037, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2037)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Source
    Nachrichten für Dokumentation. 31(1980) H.1, S.29-35
  15. Liu, S.; Liu, F.; Yu, C.; Meng, W.: ¬An effective approach to document retrieval via utilizing WordNet and recognizing phrases (2004) 0.02
    0.015025238 = product of:
      0.037563093 = sum of:
        0.021115808 = product of:
          0.06334742 = sum of:
            0.06334742 = weight(_text_:f in 4078) [ClassicSimilarity], result of:
              0.06334742 = score(doc=4078,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.4403713 = fieldWeight in 4078, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4078)
          0.33333334 = coord(1/3)
        0.016447285 = product of:
          0.049341854 = sum of:
            0.049341854 = weight(_text_:29 in 4078) [ClassicSimilarity], result of:
              0.049341854 = score(doc=4078,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.38865322 = fieldWeight in 4078, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4078)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Date
    10.10.2005 10:29:08
  16. Pinker, S.: Wörter und Regeln : Die Natur der Sprache (2000) 0.01
    0.014607467 = product of:
      0.036518667 = sum of:
        0.028369 = weight(_text_:den in 734) [ClassicSimilarity], result of:
          0.028369 = score(doc=734,freq=6.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.274247 = fieldWeight in 734, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0390625 = fieldNorm(doc=734)
        0.008149666 = product of:
          0.024448996 = sum of:
            0.024448996 = weight(_text_:22 in 734) [ClassicSimilarity], result of:
              0.024448996 = score(doc=734,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.19345059 = fieldWeight in 734, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=734)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Wie lernen Kinder sprechen? Welche Hinweise geben gerade ihre Fehler beim Spracherwerb auf den Ablauf des Lernprozesses - getreu dem Motto: "Kinder sagen die töllsten Sachen«? Und wie helfen beziehungsweise warum scheitern bislang Computer bei der Simulation neuronaler Netzwerke, die am komplizierten Gewebe der menschlichen Sprache mitwirken? In seinem neuen Buch Wörter und Regeln hat der bekannte US-amerikanische Kognitionswissenschaftler Steven Pinker (Der Sprachinstinkt) wieder einmal eine ebenso informative wie kurzweifige Erkundungstour ins Reich der Sprache unternommen. Was die Sache besonders spannend und lesenswert macht: Souverän beleuchtet der Professor am Massachusetts Institute of Technology sowohl natur- als auch geisteswissenschaftliche Aspekte. So vermittelt er einerseits linguistische Grundlagen in den Fußspuren Ferdinand de Saussures, etwa die einer generativen Grammatik, liefert einen Exkurs durch die Sprachgeschichte und widmet ein eigenes Kapitel den Schrecken der deutschen Sprache". Andererseits lässt er aber auch die neuesten bildgebenden Verfahren nicht außen vor, die zeigen, was im Gehirn bei der Sprachverarbeitung abläuft. Pinkers Theorie, die sich in diesem Puzzle verschiedenster Aspekte wiederfindet: Sprache besteht im Kein aus zwei Bestandteilen - einem mentalen Lexikon aus erinnerten Wörtern und einer mentalen Grammatik aus verschiedenen kombinatorischen Regeln. Konkret heißt das: Wir prägen uns bekannte Größen und ihre abgestuften, sich kreuzenden Merkmale ein, aber wir erzeugen auch neue geistige Produkte, in dem wir Regeln anwenden. Gerade daraus, so schließt Pinker, erschließt sich der Reichtum und die ungeheure Ausdruckskraft unserer Sprache
    Date
    19. 7.2002 14:22:31
  17. Schürmann, H.: Software scannt Radio- und Fernsehsendungen : Recherche in Nachrichtenarchiven erleichtert (2001) 0.01
    0.014415528 = product of:
      0.03603882 = sum of:
        0.030334054 = weight(_text_:den in 5759) [ClassicSimilarity], result of:
          0.030334054 = score(doc=5759,freq=14.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.29324344 = fieldWeight in 5759, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5759)
        0.0057047657 = product of:
          0.017114297 = sum of:
            0.017114297 = weight(_text_:22 in 5759) [ClassicSimilarity], result of:
              0.017114297 = score(doc=5759,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.1354154 = fieldWeight in 5759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5759)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Content
    Um Firmen und Agenturen die Beobachtungen von Medien zu erleichtern, entwickeln Forscher an der Duisburger Hochschule zurzeit ein System zur automatischen Themenerkennung in Rundfunk und Fernsehen. Das so genannte Alert-System soll dem Nutzer helfen, die für ihn relevanten Sprachinformationen aus Nachrichtensendungen herauszufiltem und weiterzuverarbeiten. Durch die automatische Analyse durch den Computer können mehrere Programme rund um die Uhr beobachtet werden. Noch erfolgt die Informationsgewinnung aus TV- und Radiosendungen auf klassischem Wege: Ein Mensch sieht, hört, liest und wertet aus. Das ist enorm zeitaufwendig und für eine Firma, die beispielsweise die Konkurrenz beobachten oder ihre Medienpräsenz dokumentieren lassen möchte, auch sehr teuer. Diese Arbeit ließe sich mit einem Spracherkenner automatisieren, sagten sich die Duisburger Forscher. Sie arbeiten nun zusammen mit Partnern aus Deutschland, Frankreich und Portugal in einem europaweiten Projekt an der Entwicklung einer entsprechenden Technologie (http://alert.uni-duisburg.de). An dem Projekt sind auch zwei Medienbeobachtungsuntemehmen beteiligt, die Oberserver Argus Media GmbH aus Baden-Baden und das französische Unternehmen Secodip. Unsere Arbeit würde schon dadurch erleichtert, wenn Informationen, die über unsere Kunden in den Medien erscheinen, vorselektiert würden", beschreibt Simone Holderbach, Leiterin der Produktentwicklung bei Oberserver, ihr Interesse an der Technik. Und wie funktioniert Alert? Das Spracherkennungssystem wird darauf getrimmt, Nachrichtensendungen in Radio und Fernsehen zu überwachen: Alles, was gesagt wird - sei es vom Nachrichtensprecher, Reporter oder Interviewten -, wird durch die automatische Spracherkennung in Text umgewandelt. Dabei werden Themen und Schlüsselwörter erkannt und gespeichert. Diese werden mit den Suchbegriffen des Nutzers verglichen. Gefundene Übereinstimmungen werden angezeigt und dem Benutzer automatisch mitgeteilt. Konventionelle Spracherkennungstechnik sei für die Medienbeobachtung nicht einsetzbar, da diese für einen anderen Zweck entwickelt worden sei, betont Prof. Gerhard Rigoll, Leiter des Fachgebiets Technische Informatik an der Duisburger Hochschule. Für die Umwandlung von Sprache in Text wurde die Alert-Software gründlich trainiert. Aus Zeitungstexten, Audio- und Video-Material wurden bislang rund 3 50 Millionen Wörter verarbeitet. Das System arbeitet in drei Sprachen. Doch so ganz fehlerfrei sei der automatisch gewonnene Text nicht, räumt Rigoll ein. Zurzeit liegt die Erkennungsrate bei 40 bis 70 Prozent. Und das wird sich in absehbarer Zeit auch nicht ändern." Musiküberlagerungen oder starke Hintergrundgeräusche bei Reportagen führen zu Ungenauigkeiten bei der Textumwandlung. Deshalb haben die, Duisburger Wissenschaftler Methoden entwickelt, die über die herkömmliche Suche nach Schlüsselwörtern hinausgehen und eine inhaltsorientierte Zuordnung ermöglichen. Dadurch erhält der Nutzer dann auch solche Nachrichten, die zwar zum Thema passen, in denen das Stichwort aber gar nicht auftaucht", bringt Rigoll den Vorteil der Technik auf den Punkt. Wird beispielsweise "Ölpreis" als Suchbegriff eingegeben, werden auch solche Nachrichten angezeigt, in denen Olkonzerne und Energieagenturen eine Rolle spielen. Rigoll: Das Alert-System liest sozusagen zwischen den Zeilen!' Das Forschungsprojekt wurde vor einem Jahr gestartet und läuft noch bis Mitte 2002. Wer sich über den Stand der Technik informieren möchte, kann dies in dieser Woche auf der Industriemesse in Hannover. Das Alert-System wird auf dem Gemeinschaftsstand "Forschungsland NRW" in Halle 18, Stand M12, präsentiert
    Source
    Handelsblatt. Nr.79 vom 24.4.2001, S.22
  18. Donath, A.: Nutzungsverbote für ChatGPT (2023) 0.01
    0.01311403 = product of:
      0.032785073 = sum of:
        0.02620616 = weight(_text_:den in 877) [ClassicSimilarity], result of:
          0.02620616 = score(doc=877,freq=8.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 877, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.03125 = fieldNorm(doc=877)
        0.006578914 = product of:
          0.01973674 = sum of:
            0.01973674 = weight(_text_:29 in 877) [ClassicSimilarity], result of:
              0.01973674 = score(doc=877,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.15546128 = fieldWeight in 877, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=877)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    ChatGPT soll an New Yorker Schulen geblockt werden, eine Konferenz zu Maschinenlernen verbietet den Einsatz, und auch in Brandenburg gibt es KI-Sorgen.
    Content
    ChatGPT auf Schulnetzwerken blockiert Die New Yorker Bildungsbehörde sperrte den Zugang zu ChatGPT in ihren Netzwerken aus Sorge, dass das KI-Tool von Schülern verwendet werde. Die Sprecherin der Behörde, Jenna Lyle, sagte Chalkbeat New York, die Sperre sei auf mögliche "negative Auswirkungen auf den Lernprozess und Bedenken hinsichtlich der Sicherheit und Richtigkeit von Inhalten" zurückzuführen. "Obwohl das Tool möglicherweise schnelle und einfache Antworten auf Fragen liefern kann, fördert es nicht die Fähigkeit zum kritischen Denken und Problemlösen", sagte Lyle.
    Milliardenbewertung für ChatGPT OpenAI, das Chatbot ChatGPT betreibt, befindet sich laut einem Bericht des Wall Street Journals in Gesprächen zu einem Aktienverkauf. Das WSJ meldete, der mögliche Verkauf der Aktien würde die Bewertung von OpenAI auf 29 Milliarden US-Dollar anheben. Sorgen auch in Brandenburg Der brandenburgische SPD-Abgeordnete Erik Stohn stellte mit Hilfe von ChatGPT eine Kleine Anfrage an den Brandenburger Landtag, in der er fragte, wie die Landesregierung sicherstelle, dass Studierende bei maschinell erstellten Texten gerecht beurteilt und benotet würden. Er fragte auch nach Maßnahmen, die ergriffen worden seien, um sicherzustellen, dass maschinell erstellte Texte nicht in betrügerischer Weise von Studierenden bei der Bewertung von Studienleistungen verwendet werden könnten.
  19. Melzer, C.: ¬Der Maschine anpassen : PC-Spracherkennung - Programme sind mittlerweile alltagsreif (2005) 0.01
    0.012536689 = product of:
      0.03134172 = sum of:
        0.025636954 = weight(_text_:den in 4044) [ClassicSimilarity], result of:
          0.025636954 = score(doc=4044,freq=10.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.24783593 = fieldWeight in 4044, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4044)
        0.0057047657 = product of:
          0.017114297 = sum of:
            0.017114297 = weight(_text_:22 in 4044) [ClassicSimilarity], result of:
              0.017114297 = score(doc=4044,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.1354154 = fieldWeight in 4044, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4044)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Content
    "Der Spracherkennung am Computer schien vor wenigen Jahren die Zukunft zu gehören. Geradezu euphorisch waren viele Computernutzer, als sich auf den Bildschirmen die ersten gesprochenen Sätze als Text darstellten. Doch die Spracherkennung erwies sich als anfällig, die Nachbearbeitung nahm manchmal mehr Zeit in Anspruch als gespart wurde. Dabei ist die Kommunikation des Menschen mit der Maschine über die Tastatur eigentlich höchst kompliziert - selbst geübte Schreiber sprechen schneller als sie tippen. Deshalb hat sich inzwischen viel getan: Im Preis und in der Genauigkeit sind viele Spracherkennungsprogramme heute alltagsreif. Die besten Systeme kosten aber noch immer mehrere hundert Euro, die günstigsten weisen Lücken auf. Letztlich gilt: Respektable Ergebnisse sind erreichbar, wenn sich der Mensch der Maschine anpasst. Die Stiftung Warentest in Berlin hat die sechs gängigsten Systeme auf den Prüfstand gestellt. Die ersten Ergebnisse waren ernüchternd: Das deutlich gesprochene "Johann Wolfgang von Goethe" wurde als "Juan Wolf kann Mohnblüte", "Jaun Wolfgang von Göbel" oder "Johann-Wolfgang Wohngüte" geschrieben. Grundsätzlich gilt: Bei einem einfachen Basiswortschatz sind die Ergebnisse genau, sobald es etwas spezieller wird, wird die Software erfinderisch. "Zweiter Weltkrieg" kann dann zu "Zeit für Geld kriegt" werden. Doch ebenso wie der Nutzer lernt auch das System. Bei der Software ist Lernfähigkeit Standard. Ohnehin muss der Benutzer das System einrichten, indem er vorgegebene Texte liest. Dabei wird das Programm der Stimme und der Sprechgeschwindigkeit angepasst. Hier gilt, dass der Anwender deutlich, aber ganz normal vorlesen sollte. Wer akzentuiert und übertrieben betont, wird später mit ungenauen Ausgaben bestraft. Erkennt das System auch nach dem Training einzelne Wörter nicht, können sie nachträglich eingefügt werden. Gleiches gilt für kompliziertere Orts- oder Eigennamen. Wie gut das funktioniert, beweist ein Gegentest: Liest ein anderer den selben Text vor, sinkt das Erkennungsniveau rapide. Die beste Lernfähigkeit attestierten die Warentester dem System "Voice Pro 10" von linguatec. Das war das mit Abstand vielseitigste, mit fast 200 Euro jedoch auch das teuerste Programm.
    Billiger geht es mit "Via Voice Standard" von IBM. Die Software kostet etwa 50 Euro, hat aber erhebliche Schwächen in der Lernfähigkeit: Sie schneidet jedoch immer noch besser ab als das gut drei Mal so teure "Voice Office Premium 10"; das im Test der sechs Programme als einziges nur ein "Befriedigend" bekam. "Man liest über Spracherkennung nicht mehr so viel" weil es funktioniert", glaubt Dorothee Wiegand von der in Hannover erscheinenden Computerzeitschrift "c't". Die Technik" etwa "Dragon Naturally Speaking" von ScanSoft, sei ausgereift, "Spracherkennung ist vor allem Statistik, die Auswertung unendlicher Wortmöglichkeiten. Eigentlich war eher die Hardware das Problem", sagt Wiegand. Da jetzt selbst einfache Heimcomputer schnell und leistungsfähig seien, hätten die Entwickler viel mehr Möglichkeiten."Aber selbst ältere Computer kommen mit den Systemen klar. Sie brauchen nur etwas länger! "Jedes Byte macht die Spracherkennung etwas schneller, ungenauer ist sie sonst aber nicht", bestätigt Kristina Henry von linguatec in München. Auch für die Produkte des Herstellers gelte jedoch, dass "üben und deutlich sprechen wichtiger sind als jede Hardware". Selbst Stimmen von Diktiergeräten würden klar, erkannt, versichert Henry: "Wir wollen einen Schritt weiter gehen und das Diktieren von unterwegs möglich machen." Der Benutzer könnte dann eine Nummer anwählen, etwa im Auto einen Text aufsprechen und ihn zu Hause "getippt" vorfinden. Grundsätzlich passt die Spracherkennungssoftware inzwischen auch auf den privaten Computer. Klar ist aber, dass selbst der bestgesprochene Text nachbearbeitet werden muss. Zudem ist vom Nutzer Geduld gefragt: Ebenso wie sein System lernt, muss der Mensch sich in Aussprache und Geschwindigkeit dem System anpassen. Dann sind die Ergebnisse allerdings beachtlich - und "Sexterminvereinbarung" statt "zwecks Terminvereinbarung" gehört der Vergangenheit an."
    Date
    3. 5.1997 8:44:22
  20. Wahlster, W.: Verbmobil : Erkennung, Analyse, Transfer, Generierung und Synthese von Spontansprache (2001) 0.01
    0.011809196 = product of:
      0.02952299 = sum of:
        0.01965462 = weight(_text_:den in 5629) [ClassicSimilarity], result of:
          0.01965462 = score(doc=5629,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.19000389 = fieldWeight in 5629, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.046875 = fieldNorm(doc=5629)
        0.00986837 = product of:
          0.029605111 = sum of:
            0.029605111 = weight(_text_:29 in 5629) [ClassicSimilarity], result of:
              0.029605111 = score(doc=5629,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.23319192 = fieldWeight in 5629, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5629)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Verbmobil ist ein langfristig angelegtes, interdisziplinäres Leitprojekt im Bereich der Sprachtechnologie. Das Verbmobil-System erkennt gesprochene Spontansprache, analysiert die Eingabe, übersetzt sie in eine Fremdsprache, erzeugt einen Satz und spricht ihn aus. Für ausgewählte Themenbereiche (z.B. Terminverhandlung, Reiseplanung, Fernwartung) soll Verbmobil Übersetzungshilfe in Gesprächssituationen mit ausländischen Partnern leisten. Das Verbundvorhaben, in dem Unternehmen der Informationstechnologie, Universitäten und Forschungszentren kooperieren, wird vom Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) in zwei Phasen (Laufzeit Phase 1: 1993-1996; Phase 2: 1997 - 2000) gefördert. Nachdem in der ersten Phase Terminverhandlungsdialoge zwischen einem deutschen und japanischen Geschäftspartner mit Englisch als Zwischensprache verarbeitet wurden, steht in der zweiten Phase von Verbmobil die robuste und bidirektionale Übersetzung spontansprachlicher Dialoge aus den Domänen Reiseplanung und Hotelreservierung für die Sprachpaare Deutsch-Englisch (ca. 10. 000 Wörter) und Deutsch-Japanisch (ca. 2.500 Wörter) im Vordergrund
    Date
    29. 1.1997 18:49:05

Years

Languages

  • d 113
  • e 108
  • f 6
  • m 3
  • ru 2
  • More… Less…

Types

  • a 182
  • el 35
  • m 26
  • s 13
  • x 6
  • p 2
  • d 1
  • More… Less…

Subjects

Classifications