Search (57 results, page 1 of 3)

  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"el"
  1. Hoppe, T.: Semantische Filterung : ein Werkzeug zur Steigerung der Effizienz im Wissensmanagement (2013) 0.02
    0.015745595 = product of:
      0.039363988 = sum of:
        0.02620616 = weight(_text_:den in 2245) [ClassicSimilarity], result of:
          0.02620616 = score(doc=2245,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 2245, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=2245)
        0.013157828 = product of:
          0.03947348 = sum of:
            0.03947348 = weight(_text_:29 in 2245) [ClassicSimilarity], result of:
              0.03947348 = score(doc=2245,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.31092256 = fieldWeight in 2245, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2245)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Dieser Artikel adressiert einen Randbereich des Wissensmanagements: die Schnittstelle zwischen Unternehmens-externen Informationen im Internet und den Leistungsprozessen eines Unternehmens. Diese Schnittstelle ist besonders für Unternehmen von Interesse, deren Leistungsprozesse von externen Informationen abhängen und die auf diese Prozesse angewiesen sind. Wir zeigen an zwei Fallbeispielen, dass die inhaltliche Filterung von Informationen beim Eintritt ins Unternehmen ein wichtiges Werkzeug darstellt, um daran anschließende Wissens- und Informationsmanagementprozesse effizient zu gestalten.
    Date
    29. 9.2015 18:56:44
  2. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.02
    0.01569825 = product of:
      0.039245624 = sum of:
        0.02620616 = weight(_text_:den in 318) [ClassicSimilarity], result of:
          0.02620616 = score(doc=318,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 318, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=318)
        0.013039465 = product of:
          0.039118394 = sum of:
            0.039118394 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.039118394 = score(doc=318,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    In der Session "Knowledge Representation" auf der ISI 2021 wurden unter der Moderation von Jürgen Reischer (Uni Regensburg) drei Projekte vorgestellt, in denen Knowledge Representation mit RDF umgesetzt wird. Die Domänen sind erfreulich unterschiedlich, die gemeinsame Klammer indes ist die Absicht, den Zugang zu Forschungsdaten zu verbessern: - Japanese Visual Media Graph - Taxonomy of Digital Research Activities in the Humanities - Forschungsdaten im konzeptuellen Modell von FRBR
    Date
    22. 5.2021 12:43:05
  3. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.01
    0.014966056 = product of:
      0.03741514 = sum of:
        0.021115808 = product of:
          0.06334742 = sum of:
            0.06334742 = weight(_text_:f in 5576) [ClassicSimilarity], result of:
              0.06334742 = score(doc=5576,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.4403713 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.33333334 = coord(1/3)
        0.016299332 = product of:
          0.048897993 = sum of:
            0.048897993 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.048897993 = score(doc=5576,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Date
    13.12.2017 14:17:22
  4. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.01
    0.013735968 = product of:
      0.03433992 = sum of:
        0.02293039 = weight(_text_:den in 4324) [ClassicSimilarity], result of:
          0.02293039 = score(doc=4324,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.2216712 = fieldWeight in 4324, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4324)
        0.011409531 = product of:
          0.034228593 = sum of:
            0.034228593 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.034228593 = score(doc=4324,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Ontologien werden eingesetzt, um durch semantische Fundierung insbesondere für das Dokumentenretrieval eine grundlegend bessere Basis zu haben, als dies gegenwärtiger Stand der Technik ist. Vorgestellt wird eine an der FH Darmstadt entwickelte und eingesetzte Ontologie, die den Gegenstandsbereich Hochschule sowohl breit abdecken und gleichzeitig differenziert semantisch beschreiben soll. Das Problem der semantischen Suche besteht nun darin, dass sie für Informationssuchende so einfach wie bei gängigen Suchmaschinen zu nutzen sein soll, und gleichzeitig auf der Grundlage des aufwendigen Informationsmodells hochwertige Ergebnisse liefern muss. Es wird beschrieben, welche Möglichkeiten die verwendete Software K-Infinity bereitstellt und mit welchem Konzept diese Möglichkeiten für eine semantische Suche nach Dokumenten und anderen Informationseinheiten (Personen, Veranstaltungen, Projekte etc.) eingesetzt werden.
    Date
    11. 2.2011 18:22:25
  5. Assem, M. van; Rijgersberg, H.; Wigham, M.; Top, J.: Converting and annotating quantitative data tables (2010) 0.01
    0.010604188 = product of:
      0.02651047 = sum of:
        0.018286826 = product of:
          0.054860476 = sum of:
            0.054860476 = weight(_text_:f in 4705) [ClassicSimilarity], result of:
              0.054860476 = score(doc=4705,freq=6.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.38137275 = fieldWeight in 4705, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4705)
          0.33333334 = coord(1/3)
        0.008223643 = product of:
          0.024670927 = sum of:
            0.024670927 = weight(_text_:29 in 4705) [ClassicSimilarity], result of:
              0.024670927 = score(doc=4705,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.19432661 = fieldWeight in 4705, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4705)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Abstract
    Companies, governmental agencies and scientists produce a large amount of quantitative (research) data, consisting of measurements ranging from e.g. the surface temperatures of an ocean to the viscosity of a sample of mayonnaise. Such measurements are stored in tables in e.g. spreadsheet files and research reports. To integrate and reuse such data, it is necessary to have a semantic description of the data. However, the notation used is often ambiguous, making automatic interpretation and conversion to RDF or other suitable format diffiult. For example, the table header cell "f(Hz)" refers to frequency measured in Hertz, but the symbol "f" can also refer to the unit farad or the quantities force or luminous flux. Current annotation tools for this task either work on less ambiguous data or perform a more limited task. We introduce new disambiguation strategies based on an ontology, which allows to improve performance on "sloppy" datasets not yet targeted by existing systems.
    Date
    29. 7.2011 14:44:56
    Source
    The Semantic Web - ISWC 2010. 9th International Semantic Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected Papers, Part I. Eds.: Peter F. Patel-Schneider et al
  6. Assem, M. van; Menken, M.R.; Schreiber, G.; Wielemaker, J.; Wielinga, B.: ¬A method for converting thesauri to RDF/OWL (2004) 0.01
    0.010517665 = product of:
      0.026294162 = sum of:
        0.014781064 = product of:
          0.044343192 = sum of:
            0.044343192 = weight(_text_:f in 4644) [ClassicSimilarity], result of:
              0.044343192 = score(doc=4644,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.3082599 = fieldWeight in 4644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4644)
          0.33333334 = coord(1/3)
        0.011513098 = product of:
          0.034539293 = sum of:
            0.034539293 = weight(_text_:29 in 4644) [ClassicSimilarity], result of:
              0.034539293 = score(doc=4644,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.27205724 = fieldWeight in 4644, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4644)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Date
    29. 7.2011 14:44:56
    Source
    Proceedings of the 3rd International Semantic Web Conference (ISWC'04). Eds. D. Plexousakis and F. van Harmelen
  7. Andelfinger, U.; Wyssusek, B.; Kremberg, B.; Totzke, R.: Ontologies in knowledge management : panacea or mirage? 0.01
    0.010311602 = product of:
      0.025779003 = sum of:
        0.021667182 = weight(_text_:den in 4393) [ClassicSimilarity], result of:
          0.021667182 = score(doc=4393,freq=14.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.2094596 = fieldWeight in 4393, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4393)
        0.0041118213 = product of:
          0.012335463 = sum of:
            0.012335463 = weight(_text_:29 in 4393) [ClassicSimilarity], result of:
              0.012335463 = score(doc=4393,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.097163305 = fieldWeight in 4393, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=4393)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Content
    Vgl. auch Mitgliederbrief Ernst-Schröder-Zentrum, Nr.41: "Die aktuelle Entwicklung insbesondere der Internettechnologien führte in den letzten Jahren zu einem Wieder-Erwachen des Interesses von Forschern und Anwendern an (technischen) Ontologien. Typische Visionen in diesem Zusammenhang sind das ,Semantic Web' und das ,Internet der Dinge' (Web 3.0). Technische Ontologien sind formale, zeichenvermittelte symbolische Repräsentationen von lebensweltlichen Zusammenhängen, die notwendigerweise zu einem großen Teil von ihrem Kontextbezug gelöst werden und über die ursprünglichen lebensweltlichen Zusammenhänge hinaus computerverarbeitbar verfügbar werden. Häufig werden dafür XML-basierte Beschreibungssprachen eingesetzt wie z.B. der OWL-Standard. Trotz des großen Interesses sind jedoch umfangreiche und erfolgreiche Beispiele von in größerem Umfang praktisch eingesetzten (technischen) Ontologien eher die Ausnahme. Die zentrale Fragestellung unseres Beitrags ist daher, ob es eventuell grundlegendere (möglicherweise auch außertechnische) Hürden gibt auf dem Weg zu einer Verwirklichung der oft visionären Vorstellungen, wie z.B. zukünftig E-Commerce und E-Business und ,Wissensmanagement' durch technische Ontologien unterstützt werden könnten: Oder ist alles vielleicht ,nur' eine Frage der Zeit, bis wir durch ausreichend leistungsfähige Technologien für solche technischen Ontologien die Versprechungen des ,Internet der Dinge' verwirklichen können?
    Als theoretischen Ausgangspunkt wählen wir in unserem Beitrag eine medienphilosophische Perspektive, die von der Fragestellung ausgeht, inwieweit menschliches Wissen, das von Subjekten explizit oder implizit gewusst wird und Sinn und Bedeutungsbezüge hat, bereits dadurch prinzipiell verändert und möglicherweise um Wesentliches reduziert wird, wenn es in technischen Ontologien - notwendigerweise symbolhaft - repräsentiert wird. Zunächst wird dazu in unserem Beitrag historisch die jahrhundertelange Tradition insbesondere der abendländischen Kulturen seit dem Mittelalter nachgezeichnet, derzufolge zunehmend die epistemische Seite von ,Wissen' in den Vordergrund gestellt wurde, die sich besonders gut symbolisch, d.h. zeichenvermittelt darstellen lässt. Demgegenüber sind wissenschaftshistorisch andere Aspekte menschlichen Wissens wie z.B. die soziale Einbettung symbolvermittelten Wissens und Anteile ,impliziten Wissens' zunehmend in den Hintergrund getreten. Auch Fragen nach Sinn und Bedeutung bzw. reflektionsorientiertem Orientierungswissen sind teilweise davon betroffen.
    Zweifelsohne hat die wissenschaftshistorisch begründete Bevorzugung epistemischen Wissens in Verbindung mit der symbolischen Repräsentation (z.B. in Büchern und zunehmend auch in digitaler, computerverarbeitbarer Form) wesentlich zur Herausbildung unseres aktuellen materiellen Wohlstands und technologischen Fortschritts in den Industrieländern beigetragen. Vielleicht hat jedoch gerade dieser Siegeszug der epistemischen, symbolhaft repräsentierten Seite menschlichen Wissens auch dazu beigetragen, dass die eher verdeckten Beiträge der begleitenden sozialen Prozesse und impliziten Anteile menschlichen Wissens erst in den allerletzten Jahren wieder zunehmend Aufmerksamkeit erhalten. Nur vor dieser wissenschaftshistorischen Kulisse kann schließlich auch erklärt werden, dass in vielen Organisationen das Schlagwort vom ,Wissens-management' oft verkürzend so verstanden wurde, von (technischen) Wissensrepräsentationssystemen zu erhoffen, dass sie als Technologie bereits unmittelbar zum gegenseitigen Wissensaustausch und Wissenstransfer für die Menschen beitragen würden, was in der Praxis dann jedoch oft nicht so wie erhofft eingetreten ist.
    In der Finanzwirtschaft mit ihren automatisierten Handelssystemen (auf Basis technischer Ontologien) wird beispielsweise inzwischen bei außergewöhnlichen Kursbewegungen der Börse der automatische Handel unterbrochen, so dass dann auf pragmatisch-natürlichsprachliche Weise nach den Gründen für die Ausschläge gesucht werden kann. Aus Sicht der technischen Ontologien wäre eine solche Unterbrechung des Computerhandels (zur Beruhigung der Märkte) nicht zwingend erforderlich, aber sie ist sehr sinnvoll aus einer außerhalb der technischen Ontologie stehenden Perspektive, die alleine nach Sinn und Bedeutung stabiler Kursverläufe zu fragen imstande ist. Der hier sich abzeichnende ,pragmatic turn' beim Einsatz technischer Ontologien ist auch in vielfältiger Weise in Trends wie z.B. Folksonomies, Sozialen Netzwerken und Open-SourceEntwicklergruppen zu erkennen. Diese Gemeinschaften zeichnen sich dadurch aus, dass sie zwar (technische) Ontologien einsetzen, diese jedoch in intensive soziale Austauschprozesse einbinden, in denen die formalen Wissensrepräsentationen mit situativer Bedeutung und Sinn versehen und angereichert werden. Dieser Trend zu ,weicheren' Formen der Nutzung von (technischen) Ontologien scheint nach aktuellem Wissensstand auf jeden Fall in der Praxis erfolgversprechender als die anfänglichen Hoffnungen des Semantic Web oder vollständiger (technischer) Ontologien - ganz abgesehen vom laufenden Pflegeaufwand 'vollständiger' technischer Ontologien.
    In diesem Sinne könnte auch Wissensaustausch und Wissensmanagement in Organisationen auf Basis (technischer) Ontologien eine neue Bedeutung erhalten im Sinne einer gezielten Ermöglichung sozialer Austauschprozesse unter Nutzung formaler Wissensrepräsentationen statt der technologiezentrierten Sichtweise, wonach bereits das Wissensrepräsentationssystem mit Wissensaustausch gleichzusetzen wäre. Letztlich haben die in (formalen) Wissensrepräsentationssystemen dargestellten technischen Ontologien alleine nämlich keine tiefere Bedeutung und auch keinen Sinn. Beides entsteht erst durch eine entsprechende Einbettung und Interpretation dieser Repräsentationen in konkreten lebensweltlichen Zusammenhängen. Und was die Menschen in diesem Interpretations-und Rekontextualisierungsprozess dann aus den zeichenvermittelten technischen Ontologien machen, ist glücklicherweise eine Frage, die sich einer vollständigen Behandlung und Abbildung in technischen Ontologien entzieht."
    Source
    http://www.cba.neu.edu/uploadedFiles/Site_Sections/OLKC_2010/Program_Overview/Parallel_Sessions/180_Wyssusek_Abstract_Ontologies%20in%20Knowledge%20Management%281%29.pdf
  8. Beppler, F.D.; Fonseca, F.T.; Pacheco, R.C.S.: Hermeneus: an architecture for an ontology-enabled information retrieval (2008) 0.01
    0.0089796325 = product of:
      0.022449082 = sum of:
        0.012669483 = product of:
          0.038008448 = sum of:
            0.038008448 = weight(_text_:f in 3261) [ClassicSimilarity], result of:
              0.038008448 = score(doc=3261,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.26422277 = fieldWeight in 3261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3261)
          0.33333334 = coord(1/3)
        0.009779599 = product of:
          0.029338794 = sum of:
            0.029338794 = weight(_text_:22 in 3261) [ClassicSimilarity], result of:
              0.029338794 = score(doc=3261,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.23214069 = fieldWeight in 3261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3261)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Date
    28.11.2016 12:43:22
    Source
    http://www.personal.psu.edu/faculty/f/u/fuf1/hermeneus/Hermeneus_architecture.pdf
  9. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.01
    0.007859188 = product of:
      0.039295938 = sum of:
        0.039295938 = product of:
          0.058943905 = sum of:
            0.029605111 = weight(_text_:29 in 4649) [ClassicSimilarity], result of:
              0.029605111 = score(doc=4649,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.23319192 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
            0.029338794 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.029338794 = score(doc=4649,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.6666667 = coord(2/3)
      0.2 = coord(1/5)
    
    Date
    29. 7.2011 14:44:56
    26.12.2011 13:40:22
  10. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.007483028 = product of:
      0.01870757 = sum of:
        0.010557904 = product of:
          0.03167371 = sum of:
            0.03167371 = weight(_text_:f in 4553) [ClassicSimilarity], result of:
              0.03167371 = score(doc=4553,freq=2.0), product of:
                0.14385001 = queryWeight, product of:
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.036090754 = queryNorm
                0.22018565 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.985786 = idf(docFreq=2232, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.33333334 = coord(1/3)
        0.008149666 = product of:
          0.024448996 = sum of:
            0.024448996 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.024448996 = score(doc=4553,freq=2.0), product of:
                0.12638368 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.036090754 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.33333334 = coord(1/3)
      0.4 = coord(2/5)
    
    Date
    16.11.2018 14:22:01
  11. Borchers, D.: Missing Link : Wenn der Kasten denkt - Niklas Luhmann und die Folgen (2017) 0.01
    0.00655154 = product of:
      0.0327577 = sum of:
        0.0327577 = weight(_text_:den in 2358) [ClassicSimilarity], result of:
          0.0327577 = score(doc=2358,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.31667316 = fieldWeight in 2358, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.078125 = fieldNorm(doc=2358)
      0.2 = coord(1/5)
    
    Abstract
    Gerade haben die Soziologen den 90. Geburstag des Systemtheoretikers Niklas Luhmann gefeiert. Die Informatiker stecken mitten in einem anspruchsvollen Digitalisierungsprojekt, seinen Gedankenkasten, sein "hölzernes Privat-Internet", zu verdaten.
  12. Endres-Niggemeyer, B.; Ziegert, C.: SummIt-BMT : (Summarize It in BMT) in Diagnose und Therapie, Abschlussbericht (2002) 0.01
    0.0056738 = product of:
      0.028369 = sum of:
        0.028369 = weight(_text_:den in 4497) [ClassicSimilarity], result of:
          0.028369 = score(doc=4497,freq=6.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.274247 = fieldWeight in 4497, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4497)
      0.2 = coord(1/5)
    
    Abstract
    SummIt-BMT (Summarize It in Bone Marrow Transplantation) - das Zielsystem des Projektes - soll Ärzten in der Knochenmarktransplantation durch kognitiv fundiertes Zusammenfassen (Endres-Niggemeyer, 1998) aus dem WWW eine schnelle Informationsaufnahme ermöglichen. Im bmbffinanzierten Teilprojekt, über das hier zu berichten ist, liegt der Schwerpunkt auf den klinischen Fragestellungen. SummIt-BMT hat als zentrale Komponente eine KMT-Ontologie. Den Systemablauf veranschaulicht Abb. 1: Benutzer geben ihren Informationsbedarf in ein strukturiertes Szenario ein. Sie ziehen dazu Begriffe aus der Ontologie heran. Aus dem Szenario werden Fragen an Suchmaschinen abgeleitet. Die Summit-BMT-Metasuchmaschine stößt Google an und sucht in Medline, der zentralen Literaturdatenbank der Medizin. Das Suchergebnis wird aufbereitet. Dabei werden Links zu Volltexten verfolgt und die Volltexte besorgt. Die beschafften Dokumente werden mit einem Schlüsselwortretrieval auf Passagen untersucht, in denen sich Suchkonzepte aus der Frage / Ontologie häufen. Diese Passagen werden zum Zusammenfassen vorgeschlagen. In ihnen werden die Aussagen syntaktisch analysiert. Die Systemagenten untersuchen sie. Lassen Aussagen sich mit einer semantischen Relation an die Frage anbinden, tragen also zur deren Beantwortung bei, werden sie in die Zusammenfassung aufgenommen, es sei denn, andere Agenten machen Hinderungsgründe geltend, z.B. Redundanz. Das Ergebnis der Zusammenfassung wird in das Frage/Antwort-Szenario integriert. Präsentiert werden Exzerpte aus den Quelldokumenten. Mit einem Link vermitteln sie einen sofortigen Rückgriff auf die Quelle. SummIt-BMT ist zum nächsten Durchgang von Informationssuche und Zusammenfassung bereit, sobald der Benutzer dies wünscht.
  13. Köstlbacher, A. (Übers.): OWL Web Ontology Language Überblick (2004) 0.01
    0.0055591664 = product of:
      0.02779583 = sum of:
        0.02779583 = weight(_text_:den in 4681) [ClassicSimilarity], result of:
          0.02779583 = score(doc=4681,freq=4.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.26870608 = fieldWeight in 4681, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
      0.2 = coord(1/5)
    
    Abstract
    Die OWL Web Ontology Language wurde entwickelt, um es Anwendungen zu ermöglichen den Inhalt von Informationen zu verarbeiten anstatt die Informationen dem Anwender nur zu präsentieren. OWL erleichtert durch zusätzliches Vokabular in Verbindung mit formaler Semantik stärkere Interpretationsmöglichkeiten von Web Inhalten als dies XML, RDF und RDFS ermöglichen. OWL besteht aus drei Untersprachen mit steigender Ausdrucksmächtigkeit: OWL Lite, OWL DL and OWL Full. Dieses Dokument wurde für Leser erstellt, die einen ersten Eindruck von den Möglichkeiten bekommen möchten, die OWL bietet. Es stellt eine Einführung in OWL anhand der Beschreibung der Merkmale der drei Untersprachen von OWL dar. Kenntnisse von RDF Schema sind hilfreich für das Verständnis, aber nicht unbedingt erforderlich. Nach der Lektüre dieses Dokuments können sich interessierte Leser für detailliertere Beschreibungen und ausführliche Beispiele der Merkmale von OWL dem OWL Guide zuwenden. Die normative formale Definition von OWL findet sich unter OWL Semantics and Abstract Syntax.
  14. Wachsmann, L.: Entwurf und Implementierung eines Modells zur Visualisierung von OWL-Properties als Protégé-PlugIn mit Layoutalgorithmen aus Graphviz (2008) 0.01
    0.005241232 = product of:
      0.02620616 = sum of:
        0.02620616 = weight(_text_:den in 4173) [ClassicSimilarity], result of:
          0.02620616 = score(doc=4173,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 4173, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=4173)
      0.2 = coord(1/5)
    
    Abstract
    Diese Diplomarbeit beschäftigt sich mit der Erstellung eines PlugIns für den Ontologie-Editor Protégé. Das PlugIn visualisiert Objekt-Properties als Verknüpfungen zwischen zwei OWL-Klassen. Als Ausgangspunkt für die Entwicklung dient das PlugIn OWLViz, das Vererbungshierarchien von OWL-Klassen als Graphen darstellt. Die Platzierung der Knoten und Kanten des Graphen wird von Algorithmen der Programmbibliothek Graphviz vorgenommen.
  15. Endres-Niggemeyer, B.: Bessere Information durch Zusammenfassen aus dem WWW (1999) 0.01
    0.005241232 = product of:
      0.02620616 = sum of:
        0.02620616 = weight(_text_:den in 4496) [ClassicSimilarity], result of:
          0.02620616 = score(doc=4496,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 4496, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=4496)
      0.2 = coord(1/5)
    
    Abstract
    Am Beispiel der Knochenmarktransplantation, eines medizinischen Spezialgebietes, wird im folgenden dargelegt, wie man BenutzerInnen eine großen Teil des Aufwandes bei der Wissensbeschaffung abnehmen kann, indem man Suchergebnisse aus dem Netz fragebezogen zusammenfaßt. Dadurch wird in zeitkritischen Situationen, wie sie in Diagnose und Therapie alltäglich sind, die Aufnahme neuen Wissens ermöglicht. Auf einen Überblick über den Stand des Textzusammenfassens und der Ontologieentwicklung folgt eine Systemskizze, in der die Informationssuche im WWW durch ein kognitiv fundiertes Zusammenfassungssystem ergänzt wird. Dazu wird eine Fach-Ontologie vorgeschlagen, die das benötigte Wissen organisiert und repräsentiert.
  16. Haas, M.: Methoden der künstlichen Intelligenz in betriebswirtschaftlichen Anwendungen (2006) 0.01
    0.005241232 = product of:
      0.02620616 = sum of:
        0.02620616 = weight(_text_:den in 4499) [ClassicSimilarity], result of:
          0.02620616 = score(doc=4499,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 4499, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=4499)
      0.2 = coord(1/5)
    
    Abstract
    Mit dieser Diplomarbeit soll vor allem ein Überblick über den derzeitigen Stand der Technik der Methoden der Semantischen Netze, der Fuzzy-Logik sowie der regelbasierten Wissensrepräsentation und -verarbeitung gegeben werden. Anhand praktischer Anwendungen wird dargestellt, in welchen Bereichen diese Techniken eingesetzt werden und welcher Nutzen sich hieraus ergibt.
  17. Bauckhage, C.: Moderne Textanalyse : neues Wissen für intelligente Lösungen (2016) 0.01
    0.005241232 = product of:
      0.02620616 = sum of:
        0.02620616 = weight(_text_:den in 2568) [ClassicSimilarity], result of:
          0.02620616 = score(doc=2568,freq=2.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.25333852 = fieldWeight in 2568, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0625 = fieldNorm(doc=2568)
      0.2 = coord(1/5)
    
    Abstract
    Im Zuge der immer größeren Verfügbarkeit von Daten (Big Data) und rasanter Fortschritte im Daten-basierten maschinellen Lernen haben wir in den letzten Jahren Durchbrüche in der künstlichen Intelligenz erlebt. Dieser Vortrag beleuchtet diese Entwicklungen insbesondere im Hinblick auf die automatische Analyse von Textdaten. Anhand einfacher Beispiele illustrieren wir, wie moderne Textanalyse abläuft und zeigen wiederum anhand von Beispielen, welche praktischen Anwendungsmöglichkeiten sich heutzutage in Branchen wie dem Verlagswesen, der Finanzindustrie oder dem Consulting ergeben.
  18. Teutsch, K.: ¬Die Welt ist doch eine Scheibe : Google-Herausforderer eyePlorer (2009) 0.00
    0.0046326383 = product of:
      0.02316319 = sum of:
        0.02316319 = weight(_text_:den in 2678) [ClassicSimilarity], result of:
          0.02316319 = score(doc=2678,freq=16.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.22392172 = fieldWeight in 2678, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.01953125 = fieldNorm(doc=2678)
      0.2 = coord(1/5)
    
    Content
    "An einem trüben Novembertag 2008 sitzen zwei Männer an einem ovalen Konferenztisch. Sie befinden sich wie die meisten Geschäftstreibenden im Strudel der Finanzmärkte. Ihr Tisch steht im einzigen mehrstöckigen Nachwendebau der Berliner Karl-Marx-Allee. Links vom Fenster leuchtet die Spitze des Fernsehturms, rechts fällt der Blick auf kilometerlange Kachelfassaden. Die Verhandlungen mit den Investoren ziehen sich seit Wochen hin. Ein rhetorisches Ringen. Der Hirnforscher fragt: "Ist Wissen mit großem 'W' und wissen mit kleinem 'w' für Sie das Gleiche?" Der Vertriebsmann sagt: "Learntainment", "Knowledge Nuggets", "Mindmapping". Am Ende liegt ein unterschriebener Vertrag auf dem Tisch - an einem Tag, an dem Daimler laut über Kurzarbeit nachdenkt. Martin Hirsch und Ralf von Grafenstein genehmigen sich einen Piccolo. In der schwersten Wirtschaftskrise der Bundesrepublik haben sie für "eyePlorer" einen potenten Investor gefunden. Er hat die Tragweite ihrer Idee verstanden, und er hat begriffen: Die Welt ist eine Scheibe.
    Eine neue visuelle Ordnung Martin Hirsch ist der Enkel des Nobelpreisträgers Werner Heisenberg. Außerdem ist er Hirnforscher und beschäftigt sich seit Jahren mit der Frage: Was tut mein Kopf eigentlich, während ich hirnforsche? Ralf von Grafenstein ist Marketingexperte und spezialisiert auf Dienstleistungen im Internet. Zusammen haben sie also am 1. Dezember 2008 eine Firma in Berlin gegründet, deren Heiliger Gral besagte Scheibe ist, auf der - das ist die Idee - bald die ganze Welt, die Internetwelt zumindest, Platz finden soll. Die Scheibe heißt eyePlorer, was sich als Aufforderung an ihre Nutzer versteht. Die sollen auf einer neuartigen, eben scheibenförmigen Plattform die unermesslichen Datensätze des Internets in eine neue visuelle Ordnung bringen. Der Schlüssel dafür, da waren sich Hirsch und von Grafenstein sicher, liegt in der Hirnforschung, denn warum nicht die assoziativen Fähigkeiten des Menschen auf Suchmaschinen übertragen? Anbieter wie Google lassen von solchen Ansätzen bislang die Finger. Hier setzt man dafür auf Volltextprogramme, also sprachbegabte Systeme, die letztlich aber, genau wie die Schlagwortsuche, nur zu opak gerankten Linksammlungen führen. Weiter als auf Seite zwei des Suchergebnisses wagt sich der träge Nutzer meistens nicht vor. Weil sie niemals wahrgenommen wird, fällt eine Menge möglicherweise kostbare Information unter den Tisch.
    Skelett mit Sonnenbrille Hirsch sitzt in einem grell erleuchteten Konferenzraum. In der rechten Ecke steht ein Skelett, dem jemand eine Sonnenbrille aufgeklemmt hat. In der Hand hält Hirsch ein Modellgehirn, auf dem er im Rhythmus seines Sprachflusses mit den Fingern trommelt. Obwohl im Verlauf der nächsten Stunden erschreckend verwickelte Netzdiagramme zum Einsatz kommen, hält Hirsch sich an die Suggestivkraft des Bildes. Er sagt: "Das Primärerlebnis der Maschine ist bei Google das eines Jägers. Sie pirscht sich an eine Internetseite heran." Man denkt: "Genauso fühlt es sich an: Suchbegriff eingeben, 'enter' drücken, Website schießen!", schon kommt die Komplementärmetapher geschmeidig aus dem Köcher: Im Gegensatz zum Google-Jäger, sagt Hirsch, sei der eyePlorer ein Sammler, der stöbere, organisiere und dann von allem nasche. Hier werden Informationen, auf die handelsübliche Suchmaschinen nur verweisen, kulinarisch aufbereitet und zu Schwerpunkten verknüpft. Im Gegensatz zu ihren Vorgängern ist die Maschine ansatzweise intelligent. Sie findet im Laufe einer Sitzung heraus, worum es dem Benutzer geht, versteht den Zusammenhang von Suche und Inhalt und ist deshalb in der Lage, Empfehlungen auszusprechen.
    Einstein, Weizsäcker und Hitler Zu Demonstrationszwecken wird die eyePlorer-Scheibe an die Wand projiziert. Gibt man im kleinen Suchfeld in der Mitte den Namen Werner Heisenberg ein, verwandelt sich die Scheibe in einen Tortenboden. Die einzelnen Stücke entsprechen Kategorien wie "Person", "Technologie" oder "Organisation". Sie selbst sind mit bunten Knöpfen bedeckt, unter denen sich die Informationen verbergen. So kommt es, dass man beim Thema Heisenberg nicht nur auf die Kollegen Einstein, Weizsäcker und Schrödinger trifft, sondern auch auf Adolf Hitler. Ein Klick auf den entsprechenden Button stellt unter anderem heraus: Heisenberg kam 1933 unter Beschuss der SS, weil er sich nicht vor den Karren einer antisemitischen Physikbewegung spannen ließ. Nach diesem Prinzip spült die frei assoziierende Maschine vollautomatisch immer wieder neue Fakten an, um die der Nutzer zwar nicht gebeten hat, die ihn bei seiner Recherche aber möglicherweise unterstützen und die er später - die Maschine ist noch ausbaubedürftig - auch modellieren darf. Aber will man das, sich von einer Maschine beraten lassen? "Google ist wie ein Zoo", sekundiert Ralf von Grafenstein. "In einem Gehege steht eine Giraffe, im anderen ein Raubtier, aber die sind klar getrennt voneinander durch Gitter und Wege. Es gibt keine Möglichkeit, sie zusammen anzuschauen. Da kommen wir ins Spiel. Wir können Äpfel mit Birnen vergleichen!" Die Welt ist eine Scheibe oder die Scheibe eben eine Welt, auf der vieles mit vielem zusammenhängt und manches auch mit nichts. Der Vorteil dieser Maschine ist, dass sie in Zukunft Sinn stiften könnte, wo andere nur spröde auf Quellen verweisen. "Google ist ja ein unheimlich heterogenes Erlebnis mit ständigen Wartezeiten und Mausklicks dazwischen. Das kostet mich viel zu viel Metagedankenkraft", sagt Hirsch. "Wir wollten eine Maschine mit einer ästhetisch ansprechenden Umgebung bauen, aus der ich mich kaum wegbewege, denn sie liefert mir Informationen in meinen Gedanken hinein."
    Wenn die Maschine denkt Zur Hybris des Projekts passt, dass der eyePlorer ursprünglich HAL heißen sollte - wie der außer Rand und Band geratene Bordcomputer aus Kubricks "2001: Odyssee im Weltraum". Wenn man die Buchstaben aber jeweils um eine Alphabetposition nach rechts verrückt, ergibt sich IBM. Was passiert mit unserem Wissen, wenn die Maschine selbst anfängt zu denken? Ralf von Grafenstein macht ein ernstes Gesicht. "Es ist nicht unser Ansinnen, sie alleinzulassen. Es geht bei uns ja nicht nur darum, zu finden, sondern auch mitzumachen. Die Community ist wichtig. Der Dialog ist beiderseitig." Der Lotse soll in Form einer wachsamen Gemeinschaft also an Bord bleiben. Begünstigt wird diese Annahme auch durch die aufkommenden Anfasstechnologien, mit denen das iPhone derzeit so erfolgreich ist: "Allein zehn Prozent der menschlichen Gehirnleistung gehen auf den Pinzettengriff zurück." Martin Hirsch wundert sich, dass diese Erkenntnis von der IT-Branche erst jetzt berücksichtigt wird. Auf berührungssensiblen Bildschirmen sollen die Nutzer mit wenigen Handgriffen bald spielerisch Inhalte schaffen und dem System zur Verfügung stellen. So wird aus der Suchmaschine ein "Sparringspartner" und aus einem Informationsknopf ein "Knowledge Nugget". Wie auch immer man die Erkenntniszutaten des Internetgroßmarkts serviert: Wissen als Zeitwort ist ein länglicher Prozess. Im Moment sei die Maschine noch auf dem Stand eines Zweijährigen, sagen ihre Schöpfer. Sozialisiert werden soll sie demnächst im Internet, ihre Erziehung erfolgt dann durch die Nutzer. Als er Martin Hirsch mit seiner Scheibe zum ersten Mal gesehen habe, dachte Ralf von Grafenstein: "Das ist überfällig! Das wird kommen! Das muss raus!" Jetzt ist es da, klein, unschuldig und unscheinbar. Man findet es bei Google."
  19. Weller, K.: Ontologien: Stand und Entwicklung der Semantik für WorldWideWeb (2009) 0.00
    0.0046326383 = product of:
      0.02316319 = sum of:
        0.02316319 = weight(_text_:den in 4425) [ClassicSimilarity], result of:
          0.02316319 = score(doc=4425,freq=4.0), product of:
            0.10344325 = queryWeight, product of:
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.036090754 = queryNorm
            0.22392172 = fieldWeight in 4425, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.866198 = idf(docFreq=6840, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4425)
      0.2 = coord(1/5)
    
    Abstract
    Die Idee zu einem semantischen Web wurde maßgeblich geprägt (wenn auch nicht initiiert) durch eine Veröffentlichung von Tim Berners Lee, James Hendler und Ora Lassila im Jahre 2001. Darin skizzieren die Autoren ihre Version von einem erweiterten und verbesserten World Wide Web: Daten sollen so aufbereitet werden, dass nicht nur Menschen diese lesen können, sondern dass auch Computer in die Lage versetzt werden, diese zu verarbeiten und sinnvoll zu kombinieren. Sie beschreiben ein Szenario, in dem "Web agents" dem Nutzer bei der Durchführung komplexer Suchanfragen helfen, wie beispielsweise "finde einen Arzt, der eine bestimmte Behandlung anbietet, dessen Praxis in der Nähe meiner Wohnung liegt und dessen Öffnungszeiten mit meinem Terminkalender zusammenpassen". Die große Herausforderung liegt hierbei darin, dass Informationen, die über mehrere Webseiten verteilt sind, gesammelt und zu einer sinnvollen Antwort kombiniert werden müssen. Man spricht dabei vom Problem der Informationsintegration (Information Integration). Diese Vision der weltweiten Datenintegration in einem Semantic Web wurde seither vielfach diskutiert, erweitert und modifiziert, an der technischen Realisation arbeitet eine Vielzahl verschiedener Forschungseinrichtungen. Einigkeit besteht dahingehend, dass eine solche Idee nur mit der Hilfe neuer bedeutungstragender Metadaten verwirklicht werden kann. Benötigt werden also neue Ansätze zur Indexierung von Web Inhalten, die eine Suche über Wortbedeutungen und nicht über bloße Zeichenketten ermöglichen können. So soll z.B. erkannt werden, dass es sich bei "Heinrich Heine" um den Namen einer Person handelt und bei "Düsseldorf" um den Namen einer Stadt. Darüber hinaus sollen auch Verbindungen zwischen einzelnen Informationseinheiten festgehalten werden, beispielsweise dass Heinrich Heine in Düsseldorf wohnte. Wenn solche semantischen Relationen konsequent eingesetzt werden, können sie in vielen Fällen ausgenutzt werden, um neue Schlussfolgerungen zu ziehen.
  20. Hinkelmann, K.: Ontopia Omnigator : ein Werkzeug zur Einführung in Topic Maps (20xx) 0.00
    0.0046052393 = product of:
      0.023026196 = sum of:
        0.023026196 = product of:
          0.06907859 = sum of:
            0.06907859 = weight(_text_:29 in 3162) [ClassicSimilarity], result of:
              0.06907859 = score(doc=3162,freq=2.0), product of:
                0.12695599 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.036090754 = queryNorm
                0.5441145 = fieldWeight in 3162, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3162)
          0.33333334 = coord(1/3)
      0.2 = coord(1/5)
    
    Date
    4. 9.2011 12:29:09

Authors

Years

Languages

  • e 37
  • d 20

Types

  • a 21
  • n 4
  • r 4
  • x 4
  • p 1
  • More… Less…