Search (13 results, page 1 of 1)

  • × author_ss:"Panzer, M."
  1. Panzer, M.: Cool URIs for the DDC : towards Web-scale accessibility of a large classification system (2008) 0.08
    0.07727912 = product of:
      0.15455824 = sum of:
        0.15455824 = sum of:
          0.09808913 = weight(_text_:web in 2629) [ClassicSimilarity], result of:
            0.09808913 = score(doc=2629,freq=8.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.5769126 = fieldWeight in 2629, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0625 = fieldNorm(doc=2629)
          0.056469105 = weight(_text_:22 in 2629) [ClassicSimilarity], result of:
            0.056469105 = score(doc=2629,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.30952093 = fieldWeight in 2629, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=2629)
      0.5 = coord(1/2)
    
    Abstract
    The report discusses metadata strategies employed and problems encountered during the first step of transforming the DDC into a Web information resource. It focuses on the process of URI design, with regard to W3C recommendations and Semantic Web paradigms. Special emphasis is placed on usefulness of the URIs for RESTful web services.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  2. Panzer, M.: Designing identifiers for the DDC (2007) 0.05
    0.049685203 = product of:
      0.099370405 = sum of:
        0.099370405 = sum of:
          0.052019615 = weight(_text_:web in 1752) [ClassicSimilarity], result of:
            0.052019615 = score(doc=1752,freq=16.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.3059541 = fieldWeight in 1752, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0234375 = fieldNorm(doc=1752)
          0.047350787 = weight(_text_:22 in 1752) [ClassicSimilarity], result of:
            0.047350787 = score(doc=1752,freq=10.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.2595412 = fieldWeight in 1752, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0234375 = fieldNorm(doc=1752)
      0.5 = coord(1/2)
    
    Content
    "Although the Dewey Decimal Classification is currently available on the web to subscribers as WebDewey and Abridged WebDewey in the OCLC Connexion service and in an XML version to licensees, OCLC does not provide any "web services" based on the DDC. By web services, we mean presentation of the DDC to other machines (not humans) for uses such as searching, browsing, classifying, mapping, harvesting, and alerting. In order to build web-accessible services based on the DDC, several elements have to be considered. One of these elements is the design of an appropriate Uniform Resource Identifier (URI) structure for Dewey. The design goals of mapping the entity model of the DDC into an identifier space can be summarized as follows: * Common locator for Dewey concepts and associated resources for use in web services and web applications * Use-case-driven, but not directly related to and outlasting a specific use case (persistency) * Retraceable path to a concept rather than an abstract identification, reusing a means of identification that is already present in the DDC and available in existing metadata. We have been working closely with our colleagues in the OCLC Office of Research (especially Andy Houghton as well as Eric Childress, Diane Vizine-Goetz, and Stu Weibel) on a preliminary identifier syntax. The basic identifier format we are currently exploring is: http://dewey.info/{aspect}/{object}/{locale}/{type}/{version}/{resource} where * {aspect} is the aspect associated with an {object}-the current value set of aspect contains "concept", "scheme", and "index"; additional ones are under exploration * {object} is a type of {aspect} * {locale} identifies a Dewey translation * {type} identifies a Dewey edition type and contains, at a minimum, the values "edn" for the full edition or "abr" for the abridged edition * {version} identifies a Dewey edition version * {resource} identifies a resource associated with an {object} in the context of {locale}, {type}, and {version}
    Some examples of identifiers for concepts follow: <http://dewey.info/concept/338.4/en/edn/22/> This identifier is used to retrieve or identify the 338.4 concept in the English-language version of Edition 22. <http://dewey.info/concept/338.4/de/edn/22/> This identifier is used to retrieve or identify the 338.4 concept in the German-language version of Edition 22. <http://dewey.info/concept/333.7-333.9/> This identifier is used to retrieve or identify the 333.7-333.9 concept across all editions and language versions. <http://dewey.info/concept/333.7-333.9/about.skos> This identifier is used to retrieve a SKOS representation of the 333.7-333.9 concept (using the "resource" element). There are several open issues at this preliminary stage of development: Use cases: URIs need to represent the range of statements or questions that could be submitted to a Dewey web service. Therefore, it seems that some general questions have to be answered first: What information does an agent have when coming to a Dewey web service? What kind of questions will such an agent ask? Placement of the {locale} component: It is still an open question if the {locale} component should be placed after the {version} component instead (<http://dewey.info/concept/338.4/edn/22/en>) to emphasize that the most important instantiation of a Dewey class is its edition, not its language version. From a services point of view, however, it could make more sense to keep the current arrangement, because users are more likely to come to the service with a present understanding of the language version they are seeking without knowing the specifics of a certain edition in which they are trying to find topics. Identification of other Dewey entities: The goal is to create a locator that does not answer all, but a lot of questions that could be asked about the DDC. Which entities are missing but should be surfaced for services or user agents? How will those services or agents interact with them? Should some entities be rendered in a different way as presented? For example, (how) should the DDC Summaries be retrievable? Would it be necessary to make the DDC Manual accessible through this identifier structure?"
  3. Panzer, M.: Dewey Web services : overview (2009) 0.03
    0.030652853 = product of:
      0.061305705 = sum of:
        0.061305705 = product of:
          0.12261141 = sum of:
            0.12261141 = weight(_text_:web in 7190) [ClassicSimilarity], result of:
              0.12261141 = score(doc=7190,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.72114074 = fieldWeight in 7190, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.15625 = fieldNorm(doc=7190)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  4. Panzer, M.: Taxonomies as resources identification, location and access of a »Webified« Dewey (2008) 0.03
    0.026279347 = product of:
      0.052558694 = sum of:
        0.052558694 = product of:
          0.10511739 = sum of:
            0.10511739 = weight(_text_:web in 5471) [ClassicSimilarity], result of:
              0.10511739 = score(doc=5471,freq=12.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6182494 = fieldWeight in 5471, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5471)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper outlines the first steps in an initiative to weave the Dewey Decimal Classification (DDC) as a resource into the fabric of the Web. In order for DDC web services to not only being »on« the Web, but rather a part of it, Dewey has to be available under the same rules as other information resources. The process of URI design for identified resources is described and a draft URI template is presented. In addition, basic semantic principles of RESTful web service architecture are discussed, and their appropriateness for making a large-scale knowledge organization system (KOS) like the DDC more congenial for Semantic Web applications is evaluated.
    Theme
    Semantic Web
  5. Panzer, M.: DDC, SKOS, and linked data on the Web (2008) 0.03
    0.026009807 = product of:
      0.052019615 = sum of:
        0.052019615 = product of:
          0.10403923 = sum of:
            0.10403923 = weight(_text_:web in 4478) [ClassicSimilarity], result of:
              0.10403923 = score(doc=4478,freq=4.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6119082 = fieldWeight in 4478, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4478)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Everything need not be miscellaneous: controlled vocabularies and classification in a Web world, OCLC/ISKO-NA Preconference Workshop,10th International ISKO Conference, Montreal, Canada, August 5-8, 2008
  6. Zeng, M.L.; Panzer, M.; Salaba, A.: Expressing classification schemes with OWL 2 Web Ontology Language : exploring issues and opportunities based on experiments using OWL 2 for three classification schemes 0.02
    0.017339872 = product of:
      0.034679744 = sum of:
        0.034679744 = product of:
          0.06935949 = sum of:
            0.06935949 = weight(_text_:web in 3130) [ClassicSimilarity], result of:
              0.06935949 = score(doc=3130,freq=4.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.4079388 = fieldWeight in 3130, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3130)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Based on the research on three general classification schemes, this paper discusses issues encountered when expressing classification schemes in SKOS and explores opportunities of resolving major issues using OWL 2 Web Ontology Language.
  7. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.02
    0.016219966 = product of:
      0.032439932 = sum of:
        0.032439932 = product of:
          0.064879864 = sum of:
            0.064879864 = weight(_text_:web in 4796) [ClassicSimilarity], result of:
              0.064879864 = score(doc=4796,freq=14.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.38159183 = fieldWeight in 4796, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4796)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
    Theme
    Semantic Web
  8. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.01
    0.010728499 = product of:
      0.021456998 = sum of:
        0.021456998 = product of:
          0.042913996 = sum of:
            0.042913996 = weight(_text_:web in 3717) [ClassicSimilarity], result of:
              0.042913996 = score(doc=3717,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.25239927 = fieldWeight in 3717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3717)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Representing classification systems on the web for publication and exchange continues to be a challenge within the SKOS framework. This paper focuses on the differences between classification schemes and other families of KOS (knowledge organization systems) that make it difficult to express classifications without sacrificing a large amount of their semantic richness. Issues resulting from the specific set of relationships between classes and topics that defines the basic nature of any classification system are discussed. Where possible, different solutions within the frameworks of SKOS and OWL are proposed and examined.
  9. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.01
    0.01028128 = product of:
      0.02056256 = sum of:
        0.02056256 = product of:
          0.04112512 = sum of:
            0.04112512 = weight(_text_:web in 2127) [ClassicSimilarity], result of:
              0.04112512 = score(doc=2127,freq=10.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.24187797 = fieldWeight in 2127, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2127)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Expressed in such manner, the Dewey number provides a language-independent representation of a Dewey concept, accompanied by language-dependent assertions about the concept. This information, identified by a URI, can be easily consumed by semantic web agents and used in various metadata scenarios. Fourthly, as we have seen, it is important to play well with others, i.e., establishing and maintaining relationships to other KOS and making the scheme available in different formats. As noted in the Dewey blog post "Tags and Dewey," since no single scheme is ever going to be the be-all, end-all solution for knowledge discovery, DDC concepts have been extensively mapped to other vocabularies and taxonomies, sometimes bridging them and acting as a backbone, sometimes using them as additional access vocabulary to be able to do more work "behind the scenes." To enable other applications and schemes to make use of those relationships, the full Dewey database is available in XML format; RDF-based formats and a web service are forthcoming. Pulling those relationships together under a common surface will be the next challenge going forward. In the semantic web community the concept of Linked Data (http://en.wikipedia.org/wiki/Linked_Data) currently receives some attention, with its emphasis on exposing and connecting data using technologies like URIs, HTTP and RDF to improve information discovery on the web. With its focus on relationships and discovery, it seems that Dewey will be well prepared to become part of this big linked data set. Now it is about putting the classification back into the world!"
    Theme
    Semantic Web
  10. Panzer, M.: Two tales of a concept : aligning FRSAD with SKOS (2011) 0.01
    0.009195855 = product of:
      0.01839171 = sum of:
        0.01839171 = product of:
          0.03678342 = sum of:
            0.03678342 = weight(_text_:web in 4789) [ClassicSimilarity], result of:
              0.03678342 = score(doc=4789,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.21634221 = fieldWeight in 4789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4789)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The FRSAD model provides an abstract analysis of subject authority data. The article tries to assess the compatibility of this conceptual framework with formalisms and practices that have emerged from the Semantic Web community. Through applying SKOS, it becomes apparent that some interpretive decisions necessary to accommodate the rigor of formal knowledge representation languages are not supported by FRSAD itself. Difficulties in clearly aligning the thema entity with either a SKOS or OWL counterpart reveal ambiguities in the FRSAD model regarding the ontological status of thema, which seems to reflect a general uncertainty regarding the aboutness of subject authority data in the library domain.
  11. Panzer, M.: Dewey: how to make it work for you (2013) 0.01
    0.008823298 = product of:
      0.017646596 = sum of:
        0.017646596 = product of:
          0.03529319 = sum of:
            0.03529319 = weight(_text_:22 in 5797) [ClassicSimilarity], result of:
              0.03529319 = score(doc=5797,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.19345059 = fieldWeight in 5797, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5797)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Knowledge quest. 42(2013) no.2, S.22-29
  12. Green, R.; Panzer, M.: Relations in the notational hierarchy of the Dewey Decimal Classification (2011) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 4823) [ClassicSimilarity], result of:
              0.030652853 = score(doc=4823,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 4823, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4823)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As part of a larger assessment of relationships in the Dewey Decimal Classification (DDC) system, this study investigates the semantic nature of relationships in the DDC notational hierarchy. The semantic relationship between each of a set of randomly selected classes and its parent class in the notational hierarchy is examined against a set of relationship types (specialization, class-instance, several flavours of whole-part).The analysis addresses the prevalence of specific relationship types, their lexical expression, difficulties encountered in assigning relationship types, compatibility of relationships found in the DDC with those found in other knowledge organization systems (KOS), and compatibility of relationships found in the DDC with those in a shared formalism like the Web Ontology Language (OWL). Since notational hierarchy is an organizational mechanism shared across most classification schemes and is often considered to provide an easy solution for ontological transformation of a classification system, the findings of the study are likely to generalize across classification schemes with respect to difficulties that might be encountered in such a transformation process.
  13. Mitchell, J.S.; Panzer, M.: Dewey linked data : Making connections with old friends and new acquaintances (2012) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 305) [ClassicSimilarity], result of:
              0.030652853 = score(doc=305,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 305, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=305)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper explores the history, uses cases, and future plans associated with availability of the Dewey Decimal Classification (DDC) system as linked data. Parts of the Dewey Decimal Classification (DDC) system have been available as linked data since 2009. Initial efforts included the DDC Summaries (the top three levels of the DDC) in eleven languages exposed as linked data in dewey.info. In 2010, the content of dewey.info was further extended by the addition of assignable numbers and captions from the Abridged Edition 14 data files in English, Italian, and Vietnamese. During 2012, we will add assignable numbers and captions from the latest full edition database, DDC 23. In addition to the "old friends" of different Dewey language versions, institutions such as the British Library and Deutsche Nationalbibliothek have made use of Dewey linked data in bibliographic records and authority files, and AGROVOC has linked to our data at a general level. We expect to extend our linked data network shortly to "new acquaintances" such as GeoNames, ISO 639-3 language codes, and Mathematics Subject Classification. In particular, we will examine the linking process to GeoNames as an example of cross-domain vocabulary alignment. In addition to linking plans, we report on use cases that facilitate machine-assisted categorization and support discovery in the Semantic Web environment.