Search (6 results, page 1 of 1)

  • × author_ss:"Panzer, M."
  • × theme_ss:"Wissensrepräsentation"
  1. Panzer, M.: Dewey Web services : overview (2009) 0.03
    0.030652853 = product of:
      0.061305705 = sum of:
        0.061305705 = product of:
          0.12261141 = sum of:
            0.12261141 = weight(_text_:web in 7190) [ClassicSimilarity], result of:
              0.12261141 = score(doc=7190,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.72114074 = fieldWeight in 7190, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.15625 = fieldNorm(doc=7190)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  2. Panzer, M.: DDC, SKOS, and linked data on the Web (2008) 0.03
    0.026009807 = product of:
      0.052019615 = sum of:
        0.052019615 = product of:
          0.10403923 = sum of:
            0.10403923 = weight(_text_:web in 4478) [ClassicSimilarity], result of:
              0.10403923 = score(doc=4478,freq=4.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6119082 = fieldWeight in 4478, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4478)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Everything need not be miscellaneous: controlled vocabularies and classification in a Web world, OCLC/ISKO-NA Preconference Workshop,10th International ISKO Conference, Montreal, Canada, August 5-8, 2008
  3. Zeng, M.L.; Panzer, M.; Salaba, A.: Expressing classification schemes with OWL 2 Web Ontology Language : exploring issues and opportunities based on experiments using OWL 2 for three classification schemes 0.02
    0.017339872 = product of:
      0.034679744 = sum of:
        0.034679744 = product of:
          0.06935949 = sum of:
            0.06935949 = weight(_text_:web in 3130) [ClassicSimilarity], result of:
              0.06935949 = score(doc=3130,freq=4.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.4079388 = fieldWeight in 3130, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3130)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Based on the research on three general classification schemes, this paper discusses issues encountered when expressing classification schemes in SKOS and explores opportunities of resolving major issues using OWL 2 Web Ontology Language.
  4. Baker, T.; Bermès, E.; Coyle, K.; Dunsire, G.; Isaac, A.; Murray, P.; Panzer, M.; Schneider, J.; Singer, R.; Summers, E.; Waites, W.; Young, J.; Zeng, M.: Library Linked Data Incubator Group Final Report (2011) 0.02
    0.016219966 = product of:
      0.032439932 = sum of:
        0.032439932 = product of:
          0.064879864 = sum of:
            0.064879864 = weight(_text_:web in 4796) [ClassicSimilarity], result of:
              0.064879864 = score(doc=4796,freq=14.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.38159183 = fieldWeight in 4796, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4796)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The mission of the W3C Library Linked Data Incubator Group, chartered from May 2010 through August 2011, has been "to help increase global interoperability of library data on the Web, by bringing together people involved in Semantic Web activities - focusing on Linked Data - in the library community and beyond, building on existing initiatives, and identifying collaboration tracks for the future." In Linked Data [LINKEDDATA], data is expressed using standards such as Resource Description Framework (RDF) [RDF], which specifies relationships between things, and Uniform Resource Identifiers (URIs, or "Web addresses") [URI]. This final report of the Incubator Group examines how Semantic Web standards and Linked Data principles can be used to make the valuable information assets that library create and curate - resources such as bibliographic data, authorities, and concept schemes - more visible and re-usable outside of their original library context on the wider Web. The Incubator Group began by eliciting reports on relevant activities from parties ranging from small, independent projects to national library initiatives (see the separate report, Library Linked Data Incubator Group: Use Cases) [USECASE]. These use cases provided the starting point for the work summarized in the report: an analysis of the benefits of library Linked Data, a discussion of current issues with regard to traditional library data, existing library Linked Data initiatives, and legal rights over library data; and recommendations for next steps. The report also summarizes the results of a survey of current Linked Data technologies and an inventory of library Linked Data resources available today (see also the more detailed report, Library Linked Data Incubator Group: Datasets, Value Vocabularies, and Metadata Element Sets) [VOCABDATASET].
    Key recommendations of the report are: - That library leaders identify sets of data as possible candidates for early exposure as Linked Data and foster a discussion about Open Data and rights; - That library standards bodies increase library participation in Semantic Web standardization, develop library data standards that are compatible with Linked Data, and disseminate best-practice design patterns tailored to library Linked Data; - That data and systems designers design enhanced user services based on Linked Data capabilities, create URIs for the items in library datasets, develop policies for managing RDF vocabularies and their URIs, and express library data by re-using or mapping to existing Linked Data vocabularies; - That librarians and archivists preserve Linked Data element sets and value vocabularies and apply library experience in curation and long-term preservation to Linked Data datasets.
    Theme
    Semantic Web
  5. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.01
    0.010728499 = product of:
      0.021456998 = sum of:
        0.021456998 = product of:
          0.042913996 = sum of:
            0.042913996 = weight(_text_:web in 3717) [ClassicSimilarity], result of:
              0.042913996 = score(doc=3717,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.25239927 = fieldWeight in 3717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3717)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Representing classification systems on the web for publication and exchange continues to be a challenge within the SKOS framework. This paper focuses on the differences between classification schemes and other families of KOS (knowledge organization systems) that make it difficult to express classifications without sacrificing a large amount of their semantic richness. Issues resulting from the specific set of relationships between classes and topics that defines the basic nature of any classification system are discussed. Where possible, different solutions within the frameworks of SKOS and OWL are proposed and examined.
  6. Green, R.; Panzer, M.: Relations in the notational hierarchy of the Dewey Decimal Classification (2011) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 4823) [ClassicSimilarity], result of:
              0.030652853 = score(doc=4823,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 4823, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4823)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As part of a larger assessment of relationships in the Dewey Decimal Classification (DDC) system, this study investigates the semantic nature of relationships in the DDC notational hierarchy. The semantic relationship between each of a set of randomly selected classes and its parent class in the notational hierarchy is examined against a set of relationship types (specialization, class-instance, several flavours of whole-part).The analysis addresses the prevalence of specific relationship types, their lexical expression, difficulties encountered in assigning relationship types, compatibility of relationships found in the DDC with those found in other knowledge organization systems (KOS), and compatibility of relationships found in the DDC with those in a shared formalism like the Web Ontology Language (OWL). Since notational hierarchy is an organizational mechanism shared across most classification schemes and is often considered to provide an easy solution for ontological transformation of a classification system, the findings of the study are likely to generalize across classification schemes with respect to difficulties that might be encountered in such a transformation process.