Search (3 results, page 1 of 1)

  • × author_ss:"Yan, E."
  • × author_ss:"Ding, Y."
  1. Ding, Y.; Jacob, E.K.; Zhang, Z.; Foo, S.; Yan, E.; George, N.L.; Guo, L.: Perspectives on social tagging (2009) 0.02
    0.01839171 = product of:
      0.03678342 = sum of:
        0.03678342 = product of:
          0.07356684 = sum of:
            0.07356684 = weight(_text_:web in 3290) [ClassicSimilarity], result of:
              0.07356684 = score(doc=3290,freq=8.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.43268442 = fieldWeight in 3290, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3290)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Social tagging is one of the major phenomena transforming the World Wide Web from a static platform into an actively shared information space. This paper addresses various aspects of social tagging, including different views on the nature of social tagging, how to make use of social tags, and how to bridge social tagging with other Web functionalities; it discusses the use of facets to facilitate browsing and searching of tagging data; and it presents an analogy between bibliometrics and tagometrics, arguing that established bibliometric methodologies can be applied to analyze tagging behavior on the Web. Based on the Upper Tag Ontology (UTO), a Web crawler was built to harvest tag data from Delicious, Flickr, and YouTube in September 2007. In total, 1.8 million objects, including bookmarks, photos, and videos, 3.1 million taggers, and 12.1 million tags were collected and analyzed. Some tagging patterns and variations are identified and discussed.
  2. Ding, Y.; Jacob, E.K.; Fried, M.; Toma, I.; Yan, E.; Foo, S.; Milojevicacute, S.: Upper tag ontology for integrating social tagging data (2010) 0.02
    0.015927691 = product of:
      0.031855382 = sum of:
        0.031855382 = product of:
          0.063710764 = sum of:
            0.063710764 = weight(_text_:web in 3421) [ClassicSimilarity], result of:
              0.063710764 = score(doc=3421,freq=6.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.37471575 = fieldWeight in 3421, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3421)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Data integration and mediation have become central concerns of information technology over the past few decades. With the advent of the Web and the rapid increases in the amount of data and the number of Web documents and users, researchers have focused on enhancing the interoperability of data through the development of metadata schemes. Other researchers have looked to the wealth of metadata generated by bookmarking sites on the Social Web. While several existing ontologies have capitalized on the semantics of metadata created by tagging activities, the Upper Tag Ontology (UTO) emphasizes the structure of tagging activities to facilitate modeling of tagging data and the integration of data from different bookmarking sites as well as the alignment of tagging ontologies. UTO is described and its utility in modeling, harvesting, integrating, searching, and analyzing data is demonstrated with metadata harvested from three major social tagging systems (Delicious, Flickr, and YouTube).
  3. Hu, B.; Dong, X.; Zhang, C.; Bowman, T.D.; Ding, Y.; Milojevic, S.; Ni, C.; Yan, E.; Larivière, V.: ¬A lead-lag analysis of the topic evolution patterns for preprints and publications (2015) 0.01
    0.009195855 = product of:
      0.01839171 = sum of:
        0.01839171 = product of:
          0.03678342 = sum of:
            0.03678342 = weight(_text_:web in 2337) [ClassicSimilarity], result of:
              0.03678342 = score(doc=2337,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.21634221 = fieldWeight in 2337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2337)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This study applied LDA (latent Dirichlet allocation) and regression analysis to conduct a lead-lag analysis to identify different topic evolution patterns between preprints and papers from arXiv and the Web of Science (WoS) in astrophysics over the last 20 years (1992-2011). Fifty topics in arXiv and WoS were generated using an LDA algorithm and then regression models were used to explain 4 types of topic growth patterns. Based on the slopes of the fitted equation curves, the paper redefines the topic trends and popularity. Results show that arXiv and WoS share similar topics in a given domain, but differ in evolution trends. Topics in WoS lose their popularity much earlier and their durations of popularity are shorter than those in arXiv. This work demonstrates that open access preprints have stronger growth tendency as compared to traditional printed publications.