Search (21 results, page 1 of 2)

  • × language_ss:"e"
  • × theme_ss:"Grundlagen u. Einführungen: Allgemeine Literatur"
  1. Chan, L.M.; Mitchell, J.S.: Dewey Decimal Classification : principles and applications (2003) 0.02
    0.024705233 = product of:
      0.049410466 = sum of:
        0.049410466 = product of:
          0.09882093 = sum of:
            0.09882093 = weight(_text_:22 in 3247) [ClassicSimilarity], result of:
              0.09882093 = score(doc=3247,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.5416616 = fieldWeight in 3247, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3247)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Object
    DDC-22
  2. Antoniou, G.; Harmelen, F. van: ¬A semantic Web primer (2004) 0.02
    0.023306753 = product of:
      0.046613507 = sum of:
        0.046613507 = product of:
          0.093227014 = sum of:
            0.093227014 = weight(_text_:web in 468) [ClassicSimilarity], result of:
              0.093227014 = score(doc=468,freq=74.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.548316 = fieldWeight in 468, product of:
                  8.602325 = tf(freq=74.0), with freq of:
                    74.0 = termFreq=74.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=468)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The development of the Semantic Web, with machine-readable content, has the potential to revolutionise the World Wide Web and its use. A Semantic Web Primer provides an introduction and guide to this emerging field, describing its key ideas, languages and technologies. Suitable for use as a textbook or for self-study by professionals, it concentrates on undergraduate-level fundamental concepts and techniques that will enable readers to proceed with building applications on their own. It includes exercises, project descriptions and annotated references to relevant online materials. A Semantic Web Primer is the only available book on the Semantic Web to include a systematic treatment of the different languages (XML, RDF, OWL and rules) and technologies (explicit metadata, ontologies and logic and interference) that are central to Semantic Web development. The book also examines such crucial related topics as ontology engineering and application scenarios. After an introductory chapter, topics covered in succeeding chapters include XML and related technologies that support semantic interoperability; RDF and RDF Schema, the standard data model for machine-processable semantics; and OWL, the W3C-approved standard for a Web ontology language more extensive than RDF Schema; rules, both monotonic and nonmonotonic, in the framework of the Semantic Web; selected application domains and how the Semantic Web would benefit them; the development of ontology-based systems; and current debates on key issues and predictions for the future.
    Footnote
    Rez. in: JASIST 57(2006) no.8, S.1132-1133 (H. Che): "The World Wide Web has been the main source of an important shift in the way people communicate with each other, get information, and conduct business. However, most of the current Web content is only suitable for human consumption. The main obstacle to providing better quality of service is that the meaning of Web content is not machine-accessible. The "Semantic Web" is envisioned by Tim Berners-Lee as a logical extension to the current Web that enables explicit representations of term meaning. It aims to bring the Web to its full potential via the exploration of these machine-processable metadata. To fulfill this, it pros ides some meta languages like RDF, OWL, DAML+OIL, and SHOE for expressing knowledge that has clear, unambiguous meanings. The first steps in searing the Semantic Web into the current Web are successfully underway. In the forthcoming years, these efforts still remain highly focused in the research and development community. In the next phase, the Semantic Web will respond more intelligently to user queries. The first chapter gets started with an excellent introduction to the Semantic Web vision. At first, today's Web is introduced, and problems with some current applications like search engines are also covered. Subsequently, knowledge management. business-to-consumer electronic commerce, business-to-business electronic commerce, and personal agents are used as examples to show the potential requirements for the Semantic Web. Next comes the brief description of the underpinning technologies, including metadata, ontology, logic, and agent. The differences between the Semantic Web and Artificial Intelligence are also discussed in a later subsection. In section 1.4, the famous "laser-cake" diagram is given to show a layered view of the Semantic Web. From chapter 2, the book starts addressing some of the most important technologies for constructing the Semantic Web. In chapter 2, the authors discuss XML and its related technologies such as namespaces, XPath, and XSLT. XML is a simple, very flexible text format which is often used for the exchange of a wide variety of data on the Web and elsewhere. The W3C has defined various languages on top of XML, such as RDF. Although this chapter is very well planned and written, many details are not included because of the extensiveness of the XML technologies. Many other books on XML provide more comprehensive coverage.
    The next chapter introduces resource description framework (RDF) and RDF schema (RDFS). Unlike XML, RDF provides a foundation for expressing the semantics of dada: it is a standard dada model for machine-processable semantics. Resource description framework schema offers a number of modeling primitives for organizing RDF vocabularies in typed hierarchies. In addition to RDF and RDFS, a query language for RDF, i.e. RQL. is introduced. This chapter and the next chapter are two of the most important chapters in the book. Chapter 4 presents another language called Web Ontology Language (OWL). Because RDFS is quite primitive as a modeling language for the Web, more powerful languages are needed. A richer language. DAML+OIL, is thus proposed as a joint endeavor of the United States and Europe. OWL takes DAML+OIL as the starting point, and aims to be the standardized and broadly accepted ontology language. At the beginning of the chapter, the nontrivial relation with RDF/RDFS is discussed. Then the authors describe the various language elements of OWL in some detail. Moreover, Appendix A contains an abstract OWL syntax. which compresses OWL and makes OWL much easier to read. Chapter 5 covers both monotonic and nonmonotonic rules. Whereas the previous chapter's mainly concentrate on specializations of knowledge representation, this chapter depicts the foundation of knowledge representation and inference. Two examples are also givwn to explain monotonic and non-monotonic rules, respectively. "To get the most out of the chapter. readers had better gain a thorough understanding of predicate logic first. Chapter 6 presents several realistic application scenarios to which the Semantic Web technology can be applied. including horizontal information products at Elsevier, data integration at Audi, skill finding at Swiss Life, a think tank portal at EnerSearch, e-learning. Web services, multimedia collection indexing, online procurement, raid device interoperability. These case studies give us some real feelings about the Semantic Web.
    The chapter on ontology engineering describes the development of ontology-based systems for the Web using manual and semiautomatic methods. Ontology is a concept similar to taxonomy. As stated in the introduction, ontology engineering deals with some of the methodological issues that arise when building ontologies, in particular, con-structing ontologies manually, reusing existing ontologies. and using semiautomatic methods. A medium-scale project is included at the end of the chapter. Overall the book is a nice introduction to the key components of the Semantic Web. The reading is quite pleasant, in part due to the concise layout that allows just enough content per page to facilitate readers' comprehension. Furthermore, the book provides a large number of examples, code snippets, exercises, and annotated online materials. Thus, it is very suitable for use as a textbook for undergraduates and low-grade graduates, as the authors say in the preface. However, I believe that not only students but also professionals in both academia and iudustry will benefit from the book. The authors also built an accompanying Web site for the book at http://www.semanticwebprimer.org. On the main page, there are eight tabs for each of the eight chapters. For each tabm the following sections are included: overview, example, presentations, problems and quizzes, errata, and links. These contents will greatly facilitate readers: for example, readers can open the listed links to further their readings. The vacancy of the errata sections also proves the quality of the book."
    LCSH
    Semantic Web
    Subject
    Semantic Web
    Theme
    Semantic Web
  3. Bowman, J.H.: Essential Dewey (2005) 0.02
    0.022787213 = product of:
      0.045574427 = sum of:
        0.045574427 = sum of:
          0.017339872 = weight(_text_:web in 359) [ClassicSimilarity], result of:
            0.017339872 = score(doc=359,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.1019847 = fieldWeight in 359, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.015625 = fieldNorm(doc=359)
          0.028234553 = weight(_text_:22 in 359) [ClassicSimilarity], result of:
            0.028234553 = score(doc=359,freq=8.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.15476047 = fieldWeight in 359, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=359)
      0.5 = coord(1/2)
    
    Abstract
    In this book, John Bowman provides an introduction to the Dewey Decimal Classification suitable either for beginners or for librarians who are out of practice using Dewey. He outlines the content and structure of the scheme and then, through worked examples using real titles, Shows readers how to use it. Most chapters include practice exercises, to which answers are given at the end of the book. A particular feature of the book is the chapter dealing with problems of specific parts of the scheme. Later chapters offer advice and how to cope with compound subjects, and a brief introduction to the Web version of Dewey.
    Content
    "The contents of the book cover: This book is intended as an introduction to the Dewey Decimal Classification, edition 22. It is not a substitute for it, and I assume that you have it, all four volumes of it, by you while reading the book. I have deliberately included only a short section an WebDewey. This is partly because WebDewey is likely to change more frequently than the printed version, but also because this book is intended to help you use the scheme regardless of the manifestation in which it appears. If you have a subscription to WebDewey and not the printed volumes you may be able to manage with that, but you may then find my references to volumes and page numbers baffling. All the examples and exercises are real; what is not real is the idea that you can classify something without seeing more than the title. However, there is nothing that I can do about this, and I have therefore tried to choose examples whose titles adequately express their subject-matter. Sometimes when you look at the 'answers' you may feel that you have been cheated, but I hope that this will be seldom. Two people deserve special thanks. My colleague Vanda Broughton has read drafts of the book and made many suggestions. Ross Trotter, chair of the CILIP Dewey Decimal Classification Committee, who knows more about Dewey than anyone in Britain today, has commented extensively an it and as far as possible has saved me from error, as well as suggesting many improvements. What errors remain are due to me alone. Thanks are also owed to OCLC Online Computer Library Center, for permission to reproduce some specimen pages of DDC 22. Excerpts from the Dewey Decimal Classification are taken from the Dewey Decimal Classification and Relative Index, Edition 22 which is Copyright 2003 OCLC Online Computer Library Center, Inc. DDC, Dewey, Dewey Decimal Classification and WebDewey are registered trademarks of OCLC Online Computer Library Center, Inc."
    Footnote
    "The title says it all. The book contains the essentials for a fundamental understanding of the complex world of the Dewey Decimal Classification. It is clearly written and captures the essence in a concise and readable style. Is it a coincidence that the mysteries of the Dewey Decimal System are revealed in ten easy chapters? The typography and layout are clear and easy to read and the perfect binding withstood heavy use. The exercises and answers are invaluable in illustrating the points of the several chapters. The book is well structured. Chapter 1 provides an "Introduction and background" to classification in general and Dewey in particular. Chapter 2 describes the "Outline of the scheme" and the conventions in the schedules and tables. Chapter 3 covers "Simple subjects" and introduces the first of the exercises. Chapters 4 and 5 describe "Number-building" with "standard subdivisions" in the former and "other methods" in the latter. Chapter 6 provides an excellent description of "Preference order" and Chapter 7 deals with "Exceptions and options." Chapter 8 "Special subjects," while no means exhaustive, gives a thorough analysis of problems with particular parts of the schedules from "100 Philosophy" to "910 Geography" with a particular discussion of "'Persons treatment"' and "Optional treatment of biography." Chapter 9 treats "Compound subjects." Chapter 10 briefly introduces WebDewey and provides the URL for the Web Dewey User Guide http://www.oclc.org/support/documentation/dewey/ webdewey_userguide/; the section for exercises says: "You are welcome to try using WebDewey an the exercises in any of the preceding chapters." Chapters 6 and 7 are invaluable at clarifying the options and bases for choice when a work is multifaceted or is susceptible of classification under different Dewey Codes. The recommendation "... not to adopt options, but use the scheme as instructed" (p. 71) is clearly sound. As is, "What is vital, of course, is that you keep a record of the decisions you make and to stick to them. Any option Chosen must be used consistently, and not the whim of the individual classifier" (p. 71). The book was first published in the UK and the British overtones, which may seem quite charming to a Canadian, may be more difficult for readers from the United States. The correction of Dewey's spelling of Labor to Labo [u] r (p. 54) elicited a smile for the championing of lost causes and some relief that we do not have to cope with 'simplified speling.' The down-to-earth opinions of the author, which usually agree with those of the reviewer, add savour to the text and enliven what might otherwise have been a tedious text indeed. However, in the case of (p. 82):
    Object
    DDC-22
  4. Kumar, K.: Theory of classification (1989) 0.02
    0.021175914 = product of:
      0.042351827 = sum of:
        0.042351827 = product of:
          0.084703654 = sum of:
            0.084703654 = weight(_text_:22 in 6774) [ClassicSimilarity], result of:
              0.084703654 = score(doc=6774,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.46428138 = fieldWeight in 6774, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6774)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    25. 3.2019 18:15:22
  5. Langridge, D.W.: Classification: its kinds, systems, elements and application (1992) 0.02
    0.019964844 = product of:
      0.039929688 = sum of:
        0.039929688 = product of:
          0.079859376 = sum of:
            0.079859376 = weight(_text_:22 in 770) [ClassicSimilarity], result of:
              0.079859376 = score(doc=770,freq=4.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.4377287 = fieldWeight in 770, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=770)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    26. 7.2002 14:01:22
    Footnote
    Rez. in: Journal of documentation 49(1993) no.1, S.68-70. (A. Maltby); Journal of librarianship and information science 1993, S.108-109 (A.G. Curwen); Herald of library science 33(1994) nos.1/2, S.85 (P.N. Kaula); Knowledge organization 22(1995) no.1, S.45 (M.P. Satija)
  6. Kaushik, S.K.: DDC 22 : a practical approach (2004) 0.02
    0.018675402 = product of:
      0.037350804 = sum of:
        0.037350804 = product of:
          0.07470161 = sum of:
            0.07470161 = weight(_text_:22 in 1842) [ClassicSimilarity], result of:
              0.07470161 = score(doc=1842,freq=14.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.4094577 = fieldWeight in 1842, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1842)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A system of library classification that flashed across the inquiring mind of young Melvil Louis Kossuth Dewey (known as Melvil Dewey) in 1873 is still the most popular classification scheme.. The modern library classification begins with Dewey Decimal Classification (DDC). Melvil Dewey devised DDC in 1876. DDC has is credit of 128 years of boudless success. The DDC is being taught as a practical subject throughout the world and it is being used in majority of libraries in about 150 countries. This is the result of continuous revision that 22nd Edition of DDC has been published in July 2003. No other classification scheme has published so many editions. Some welcome changes have been made in DDC 22. To reduce the Christian bias in 200 religion, the numbers 201 to 209 have been devoted to specific aspects of religion. In the previous editions these numbers were devoted to Christianity. to enhance the classifier's efficiency, Table 7 has been removed from DDC 22 and the provision of adding group of persons is made by direct use of notation already available in schedules and in notation -08 from Table 1 Standard Subdivision. The present book is an attempt to explain, with suitable examples, the salient provisions of DDC 22. The book is written in simple language so that the students may not face any difficulty in understanding what is being explained. The examples in the book are explained in a step-by-step procedure. It is hoped that this book will prove of great help and use to the library professionals in general and library and information science students in particular.
    Content
    1. Introduction to DDC 22 2. Major changes in DDC 22 3. Introduction to the schedules 4. Use of Table 1 : Standard Subdivisions 5. Use of Table 2 : Areas 6. Use of Table 3 : Subdivisions for the arts, for individual literatures, for specific literary forms 7. Use to Table 4 : Subdivisions of individual languages and language families 8. Use of Table 5 : Ethic and National groups 9. Use of Table 6 : Languages 10. Treatment of Groups of Persons
    Object
    DDC-22
  7. Marcella, R.; Newton, R.: ¬A new manual of classification (1994) 0.02
    0.017646596 = product of:
      0.03529319 = sum of:
        0.03529319 = product of:
          0.07058638 = sum of:
            0.07058638 = weight(_text_:22 in 885) [ClassicSimilarity], result of:
              0.07058638 = score(doc=885,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.38690117 = fieldWeight in 885, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=885)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: Knowledge organization 22(1995) no.3/4, S.178-179 (M.P. Satija); Journal of documentation 51(1995) no.4, S.437-439 (R. Brunt)
  8. Scott, M.L.: Dewey Decimal Classification, 22nd edition : a study manual and number building guide (2005) 0.02
    0.017646596 = product of:
      0.03529319 = sum of:
        0.03529319 = product of:
          0.07058638 = sum of:
            0.07058638 = weight(_text_:22 in 4594) [ClassicSimilarity], result of:
              0.07058638 = score(doc=4594,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.38690117 = fieldWeight in 4594, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4594)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Object
    DDC-22
  9. Belew, R.K.: Finding out about : a cognitive perspective on search engine technology and the WWW (2001) 0.02
    0.017339872 = product of:
      0.034679744 = sum of:
        0.034679744 = product of:
          0.06935949 = sum of:
            0.06935949 = weight(_text_:web in 3346) [ClassicSimilarity], result of:
              0.06935949 = score(doc=3346,freq=16.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.4079388 = fieldWeight in 3346, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3346)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The World Wide Web is rapidly filling with more text than anyone could have imagined even a short time ago, but the task of isolating relevant parts of this vast information has become just that much more daunting. Richard Belew brings a cognitive perspective to the study of information retrieval as a discipline within computer science. He introduces the idea of Finding Out About (FDA) as the process of actively seeking out information relevant to a topic of interest and describes its many facets - ranging from creating a good characterization of what the user seeks, to what documents actually mean, to methods of inferring semantic clues about each document, to the problem of evaluating whether our search engines are performing as we have intended. Finding Out About explains how to build the tools that are useful for searching collections of text and other media. In the process it takes a close look at the properties of textual documents that do not become clear until very large collections of them are brought together and shows that the construction of effective search engines requires knowledge of the statistical and mathematical properties of linguistic phenomena, as well as an appreciation for the cognitive foundation we bring to the task as language users. The unique approach of this book is its even handling of the phenomena of both numbers and words, making it accessible to a wide audience. The textbook is usable in both undergraduate and graduate classes on information retrieval, library science, and computational linguistics. The text is accompanied by a CD-ROM that contains a hypertext version of the book, including additional topics and notes not present in the printed edition. In addition, the CD contains the full text of C.J. "Keith" van Rijsbergen's famous textbook, Information Retrieval (now out of print). Many active links from Belew's to van Rijsbergen's hypertexts help to unite the material. Several test corpora and indexing tools are provided, to support the design of your own search engine. Additional exercises using these corpora and code are available to instructors. Also supporting this book is a Web site that will include recent additions to the book, as well as links to sites of new topics and methods.
    LCSH
    World Wide Web / Computer programs
    Web search engines
    RSWK
    Suchmaschine / World Wide Web / Information Retrieval
    Subject
    Suchmaschine / World Wide Web / Information Retrieval
    World Wide Web / Computer programs
    Web search engines
  10. Schwartz, C.: Sorting out the Web : approaches to subject access (2001) 0.02
    0.015798118 = product of:
      0.031596236 = sum of:
        0.031596236 = product of:
          0.06319247 = sum of:
            0.06319247 = weight(_text_:web in 2050) [ClassicSimilarity], result of:
              0.06319247 = score(doc=2050,freq=34.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.37166741 = fieldWeight in 2050, product of:
                  5.8309517 = tf(freq=34.0), with freq of:
                    34.0 = termFreq=34.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=2050)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: KO 50(2003) no.1, S.45-46 (L.M. Given): "In her own preface to this work, the author notes her lifelong fascination with classification and order, as well as her more recent captivation with the Internet - a place of "chaos in need of organization" (xi). Sorting out the Web examines current efforts to organize the Web and is well-informed by the author's academic and professional expertise in information organization, information retrieval, and Web development. Although the book's level and tone are particularly relevant to a student audience (or others interested in Web-based subject access at an introductory level), it will also appeal to information professionals developing subject access systems across a range of information contexts. There are six chapters in the book, each describing and analyzing one core concept related to the organization of Web content. All topics are presented in a manner ideal for newcomers to the area, with clear definitions, examples, and visuals that illustrate the principles under discussion. The first chapter provides a brief introduction to developments in information technology, including an historical overview of information services, users' needs, and libraries' responses to the Internet. Chapter two introduces metadata, including core concepts and metadata formats. Throughout this chapter the author presents a number of figures that aptly illustrate the application of metadata in HTML, SGML, and MARC record environments, and the use of metadata tools (e.g., XML, RDF). Chapter three begins with an overview of classification theory and specific schemes, but the author devotes most of the discussion to the application of classification systems in the Web environment (e.g., Dewey, LCC, UDC). Web screen captures illustrate the use of these schemes for information sources posted to sites around the world. The chapter closes with a discussion of the future of classification; this is a particularly useful section as the author presents a listing of core journal and conference venues where new approaches to Web classification are explored. In chapter four, the author extends the discussion of classification to the use of controlled vocabularies. As in the first few chapters, the author first presents core background material, including reasons to use controlled vocabularies and the differences between preand post-coordinate indexing, and then discusses the application of specific vocabularies in the Web environment (e.g., Infomine's use of LCSH). The final section of the chapter explores failure in subject searching and the limitations of controlled vocabularies for the Web. Chapter five discusses one of the most common and fast-growing topics related to subject access an the Web: search engines. The author presents a clear definition of the term that encompasses classified search lists (e.g., Yahoo) and query-based engines (e.g., Alta Vista). In addition to historical background an the development of search engines, Schwartz also examines search service types, features, results, and system performance.
    The chapter concludes with an appendix of search tips that even seasoned searchers will appreciate; these tips cover the complete search process, from preparation to the examination of results. Chapter six is appropriately entitled "Around the Corner," as it provides the reader with a glimpse of the future of subject access for the Web. Text mining, visualization, machine-aided indexing, and other topics are raised here to whet the reader's appetite for what is yet to come. As the author herself notes in these final pages, librarians will likely increase the depth of their collaboration with software engineers, knowledge managers and others outside of the traditional library community, and thereby push the boundaries of subject access for the digital world. This final chapter leaves this reviewer wanting a second volume of the book, one that might explore these additional topics, as they evolve over the coming years. One characteristic of any book that addresses trends related to the Internet is how quickly the text becomes dated. However, as the author herself asserts, there are core principles related to subject analysis that stand the test of time, leaving the reader with a text that may be generalized well beyond the publication date. In this, Schwartz's text is similar to other recent publications (e.g., Jakob Nielsen's Web Usability, also published in 2001) that acknowledge the mutability of the Web, and therefore discuss core principles and issues that may be applied as the medium itself evolves. This approach to the writing makes this a useful book for those teaching in the areas of subject analysis, information retrieval and Web development for possible consideration as a course text. Although the websites used here may need to be supplemented with more current examples in the classroom, the core content of the book will be relevant for many years to come. Although one might expect that any book taking subject access as its focus world, itself, be easy to navigate, this is not always the case. In this text, however, readers will be pleased to find that no small detail in content access has been spared. The subject Index is thorough and well-crafted, and the inclusion of an exhaustive author index is particularly useful for quick reference. In addition, the table of contents includes sub-themes for each chapter, and a complete table of figures is provided. While the use of colour figures world greatly enhance the text, all black-andwhite images are clear and sharp, a notable fact given that most of the figures are screen captures of websites or database entries. In addition, the inclusion of comprehensive reference lists at the close of each chapter makes this a highly readable text for students and instructors alike; each section of the book can stand as its own "expert review" of the topic at hand. In both content and structure this text is highly recommended. It certainly meets its intended goal of providing a timely introduction to the methods and problems of subject access in the Web environment, and does so in a way that is readable, interesting and engaging."
  11. Understanding metadata (2004) 0.01
    0.014117276 = product of:
      0.028234553 = sum of:
        0.028234553 = product of:
          0.056469105 = sum of:
            0.056469105 = weight(_text_:22 in 2686) [ClassicSimilarity], result of:
              0.056469105 = score(doc=2686,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.30952093 = fieldWeight in 2686, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2686)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    10. 9.2004 10:22:40
  12. Lancaster, F.W.: Vocabulary control for information retrieval (1986) 0.01
    0.014117276 = product of:
      0.028234553 = sum of:
        0.028234553 = product of:
          0.056469105 = sum of:
            0.056469105 = weight(_text_:22 in 217) [ClassicSimilarity], result of:
              0.056469105 = score(doc=217,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.30952093 = fieldWeight in 217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=217)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 4.2007 10:07:51
  13. Foskett, A.C.: ¬The subject approach to information (1996) 0.01
    0.010587957 = product of:
      0.021175914 = sum of:
        0.021175914 = product of:
          0.042351827 = sum of:
            0.042351827 = weight(_text_:22 in 749) [ClassicSimilarity], result of:
              0.042351827 = score(doc=749,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.23214069 = fieldWeight in 749, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=749)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    25. 7.2002 21:22:31
  14. Chowdhury, G.G.: Introduction to modern information retrieval (1999) 0.01
    0.010587957 = product of:
      0.021175914 = sum of:
        0.021175914 = product of:
          0.042351827 = sum of:
            0.042351827 = weight(_text_:22 in 4902) [ClassicSimilarity], result of:
              0.042351827 = score(doc=4902,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.23214069 = fieldWeight in 4902, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4902)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Enthält die Kapitel: 1. Basic concepts of information retrieval systems, 2. Database technology, 3. Bibliographic formats, 4. Subject analysis and representation, 5. Automatic indexing and file organization, 6. Vocabulary control, 7. Abstracts and abstracting, 8. Searching and retrieval, 9. Users of information retrieval, 10. Evaluation of information retrieval systems, 11. Evaluation experiments, 12. Online information retrieval, 13. CD-ROM information retrieval, 14. Trends in CD-ROM and online information retrieval, 15. Multimedia information retrieval, 16. Hypertext and hypermedia systems, 17. Intelligent information retrieval, 18. Natural language processing and information retrieval, 19. Natural language interfaces, 20. Natural language text processing and retrieval systems, 21. Problems and prospects of natural language processing systems, 22. The Internet and information retrieval, 23. Trends in information retrieval.
  15. ¬The discipline of organizing (2013) 0.01
    0.008669936 = product of:
      0.017339872 = sum of:
        0.017339872 = product of:
          0.034679744 = sum of:
            0.034679744 = weight(_text_:web in 2172) [ClassicSimilarity], result of:
              0.034679744 = score(doc=2172,freq=4.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.2039694 = fieldWeight in 2172, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2172)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Organizing is such a common activity that we often do it without thinking much about it. In our daily lives we organize physical things--books on shelves, cutlery in kitchen drawers--and digital things--Web pages, MP3 files, scientific datasets. Millions of people create and browse Web sites, blog, tag, tweet, and upload and download content of all media types without thinking "I'm organizing now" or "I'm retrieving now." This book offers a framework for the theory and practice of organizing that integrates information organization (IO) and information retrieval (IR), bridging the disciplinary chasms between Library and Information Science and Computer Science, each of which views and teaches IO and IR as separate topics and in substantially different ways. It introduces the unifying concept of an Organizing System--an intentionally arranged collection of resources and the interactions they support--and then explains the key concepts and challenges in the design and deployment of Organizing Systems in many domains, including libraries, museums, business information systems, personal information management, and social computing. Intended for classroom use or as a professional reference, the book covers the activities common to all organizing systems: identifying resources to be organized; organizing resources by describing and classifying them; designing resource-based interactions; and maintaining resources and organization over time. The book is extensively annotated with disciplinary-specific notes to ground it with relevant concepts and references of library science, computing, cognitive science, law, and business.
  16. Rowley, J.E.; Farrow, J.: Organizing knowledge : an introduction to managing access to information (2000) 0.01
    0.007663213 = product of:
      0.015326426 = sum of:
        0.015326426 = product of:
          0.030652853 = sum of:
            0.030652853 = weight(_text_:web in 2463) [ClassicSimilarity], result of:
              0.030652853 = score(doc=2463,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.18028519 = fieldWeight in 2463, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2463)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    For its third edition this standard text on knowledge organization and retrieval has been extensively revised and restructured to accommodate the increased significance of electronic information resources. With the help of many new sections on topics such as information retrieval via the Web, metadata and managing information retrieval systems, the book explains principles relating to hybrid print-based and electronic, networked environments experienced by today's users. Part I, Information Basics, explores the nature of information and knowledge and their incorporation into documents. Part II, Records, focuses specifically on electronic databases for accessing print or electronic media. Part III, Access, explores the range of tools for accessing information resources and covers interfaces, indexing and searching languages, classification, thesauri and catalogue and bibliographic access points. Finally, Part IV, Systems, describes the contexts through which knowledge can be organized and retrieved, including OPACs, the Internet, CD-ROMs, online search services and printed indexes and documents. This book is a comprehensive and accessible introduction to knowledge organization for both undergraduate and postgraduate students of information management and information systems
  17. Batley, S.: Classification in theory and practice (2005) 0.01
    0.00530923 = product of:
      0.01061846 = sum of:
        0.01061846 = product of:
          0.02123692 = sum of:
            0.02123692 = weight(_text_:web in 1170) [ClassicSimilarity], result of:
              0.02123692 = score(doc=1170,freq=6.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.12490524 = fieldWeight in 1170, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1170)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book examines a core topic in traditional librarianship: classification. Classification has often been treated as a sub-set of cataloguing and indexing with relatively few basic textbooks concentrating solely an the theory and practice of classifying resources. This book attempts to redress the balance somewhat. The aim is to demystify a complex subject, by providing a sound theoretical underpinning, together with practical advice and promotion of practical skills. The text is arranged into five chapters: Chapter 1: Classification in theory and practice. This chapter explores theories of classification in broad terms and then focuses an the basic principles of library classification, introducing readers to technical terminology and different types of classification scheme. The next two chapters examine individual classification schemes in depth. Each scheme is explained using frequent examples to illustrate basic features. Working through the exercises provided should be enjoyable and will enable readers to gain practical skills in using the three most widely used general library classification schemes: Dewey Decimal Classification, Library of Congress Classification and Universal Decimal Classification. Chapter 2: Classification schemes for general collections. Dewey Decimal and Library of Congress classifications are the most useful and popular schemes for use in general libraries. The background, coverage and structure of each scheme are examined in detail in this chapter. Features of the schemes and their application are illustrated with examples. Chapter 3: Classification schemes for specialist collections. Dewey Decimal and Library of Congress may not provide sufficient depth of classification for specialist collections. In this chapter, classification schemes that cater to specialist needs are examined. Universal Decimal Classification is superficially very much like Dewey Decimal, but possesses features that make it a good choice for specialist libraries or special collections within general libraries. It is recognised that general schemes, no matter how deep their coverage, may not meet the classification needs of some collections. An answer may be to create a special classification scheme and this process is examined in detail here. Chapter 4: Classifying electronic resources. Classification has been reborn in recent years with an increasing need to organise digital information resources. A lot of work in this area has been conducted within the computer science discipline, but uses basic principles of classification and thesaurus construction. This chapter takes a broad view of theoretical and practical issues involved in creating classifications for digital resources by examining subject trees, taxonomies and ontologies. Chapter 5: Summary. This chapter provides a brief overview of concepts explored in depth in previous chapters. Development of practical skills is emphasised throughout the text. It is only through using classification schemes that a deep understanding of their structure and unique features can be gained. Although all the major schemes covered in the text are available an the Web, it is recommended that hard-copy versions are used by those wishing to become acquainted with their overall structure. Recommended readings are supplied at the end of each chapter and provide useful sources of additional information and detail. Classification demands precision and the application of analytical skills, working carefully through the examples and the practical exercises should help readers to improve these faculties. Anyone who enjoys cryptic crosswords should recognise a parallel: classification often involves taking the meaning of something apart and then reassembling it in a different way.
    Footnote
    - Similarly, there is very little space provided to the thorny issue of subject analysis, which is at the conceptual core of classification work of any kind. The author's recommendations are practical, and do not address the subjective nature of this activity, nor the fundamental issues of how the classification schemes are interpreted and applied in diverse contexts, especially with respect to what a work "is about." - Finally, there is very little about practical problem solving - stories from the trenches as it were. How does a classifier choose one option over another when both seem plausible, even given that he or she has done a user and task analysis? How do classifiers respond to rapid or seemingly impulsive change? How do we evaluate the products of our work? How do we know what is the "correct" solution, even if we work, as most of us do, assuming that this is an elusive goal, but we try our best anyway? The least satisfying section of the book is the last, where the author proposes some approaches to organizing electronic resources. The suggestions seem to be to more or less transpose and adapt skills and procedures from the world of organizing books an shelves to the virtual hyperlinked world of the Web. For example, the author states (p. 153-54): Precise classification of documents is perhaps not as crucial in the electronic environment as it is in the traditional library environment. A single document can be linked to and retrieved via several different categories to allow for individual needs and expertise. However, it is not good practice to overload the system with links because that will affect its use. Effort must be made to ensure that inappropriate or redundant links are not included. The point is well taken: too muck irrelevant information is not helpful. At the same time an important point concerning the electronic environment has been overlooked as well: redundancy is what relieves the user from making precise queries or knowing the "right" place for launching a search, and redundancy is what is so natural an the Web. These are small objections, however. Overall the book is a carefully crafted primer that gives the student a strong foundation an which to build further understanding. There are well-chosen and accessible references for further reading. I world recommend it to any instructor as an excellent starting place for deeper analysis in the classroom and to any student as an accompanying text to the schedules themselves."
  18. Rowley, J.E.; Hartley, R.: Organizing knowledge : an introduction to managing access to information (2008) 0.00
    0.0045979274 = product of:
      0.009195855 = sum of:
        0.009195855 = product of:
          0.01839171 = sum of:
            0.01839171 = weight(_text_:web in 2464) [ClassicSimilarity], result of:
              0.01839171 = score(doc=2464,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.108171105 = fieldWeight in 2464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=2464)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: VOEB-Mitt. 61(2008) H.4, S.164-167 (O. Oberhauser): " Dieses nunmehr in vierter Auflage vorliegende Werk ist - vor allem in der angelsächsischen Welt - bereits zu einem Standardlehrtext für Studenten informationswissenschaftlicher Studiengänge geworden. Es zeichnete sich stets durch klaren Aufbau, gute Lesbarkeit und eine bei aller Knappheit doch relativ umfassende Themenbehandlung aus. Der im Titel verwendete Begriff organizing knowledge steht hier ja nicht für mögliche engere Bedeutungen wie etwa Wissensrepräsentation oder gar Klassifikation, sondern für den gesamten Themenbereich information retrieval bzw. information management. Die beiden ersten Auflagen verfasste die versierte und produktive Lehrbuchautorin Jennifer Rowley noch alleine;1 erst bei der dritten Auflage (2000) stand ihr John Farrow (2002 verstorben) als Mitautor zur Seite.2 Inzwischen zur Professorin am Department of Information and Communications der Manchester Metropolitan University avanciert, konnte Rowley nunmehr für die neueste Auflage den ebenfalls als Lehrbuchautor erfahrenen Richard Hartley, Professor am selben Institut und überdies dessen Vorstand, als zweiten Verfasser gewinnen. Wie die Autoren in der Einleitung ausführen, wurde das Buch gegenüber der letzten Auflage stark verändert. Die Neuerungen spiegeln insbesondere die anhaltende Verschiebung hin zu einer vernetzten und digitalen Informationswelt wider, mit allen Konsequenzen dieser Entwicklung für Dokumente, Information, Wissen, Informationsdienste und Benutzer. Neue bzw. stark überarbeitete Themenbereiche sind u.a. Ontologien und Taxonomien, Informationsverhalten, digitale Bibliotheken, Semantisches Web, Evaluation von Informationssystemen, Authentifizierung und Sicherheit, Veränderungsmanagement. Der Text wurde revidiert und auch, was diverse Standards und Normen betrifft, auf den aktuellen Stand gebracht. Der in der dritten Auflage noch separate Abschnitt über das Internet und seine Anwendungen wurde zugunsten einer Integration dieser Themen in die einzelnen Kapitel aufgelassen. Das Buch wurde neu gegliedert - es weist jetzt zwölf Kapitel auf, die in drei grosse Abschnitte gruppiert sind. Jedes Kapitel beginnt mit einer kurzen Einleitung, in der die beabsichtigten Lehr- bzw. Lernziele vorgestellt werden. Am Kapitelende gibt es jeweils eine Zusammenfassung, einige (Prüfungs-)Fragen zum Stoff sowie eine nicht allzu lange Liste der zitierten bzw. zur Vertiefung empfohlenen Literatur. Diese durchgehende Strukturierung erleichtert die Lektüre und Rezeption der Inhalte und ist m.E. für einen Lehrtext besonders vorteilhaft.
  19. Broughton, V.: Essential thesaurus construction (2006) 0.00
    0.0030652853 = product of:
      0.0061305705 = sum of:
        0.0061305705 = product of:
          0.012261141 = sum of:
            0.012261141 = weight(_text_:web in 2924) [ClassicSimilarity], result of:
              0.012261141 = score(doc=2924,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.07211407 = fieldWeight in 2924, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2924)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Rez. in: Mitt. VÖB 60(2007) H.1, S.98-101 (O. Oberhauser): "Die Autorin von Essential thesaurus construction (and essential taxonomy construction, so der implizite Untertitel, vgl. S. 1) ist durch ihre Lehrtätigkeit an der bekannten School of Library, Archive and Information Studies des University College London und durch ihre bisherigen Publikationen auf den Gebieten (Facetten-)Klassifikation und Thesaurus fachlich einschlägig ausgewiesen. Nach Essential classification liegt nun ihr Thesaurus-Lehrbuch vor, mit rund 200 Seiten Text und knapp 100 Seiten Anhang ein handliches Werk, das seine Genese zum Grossteil dem Lehrbetrieb verdankt, wie auch dem kurzen Einleitungskapitel zu entnehmen ist. Das Buch ist der Schule von Jean Aitchison et al. verpflichtet und wendet sich an "the indexer" im weitesten Sinn, d.h. an alle Personen, die ein strukturiertes, kontrolliertes Fachvokabular für die Zwecke der sachlichen Erschliessung und Suche erstellen wollen bzw. müssen. Es möchte dieser Zielgruppe das nötige methodische Rüstzeug für eine solche Aufgabe vermitteln, was einschliesslich der Einleitung und der Schlussbemerkungen in zwanzig Kapiteln geschieht - eine ansprechende Strukturierung, die ein wohldosiertes Durcharbeiten möglich macht. Zu letzterem tragen auch die von der Autorin immer wieder gestellten Übungsaufgaben bei (Lösungen jeweils am Kapitelende). Zu Beginn der Darstellung wird der "information retrieval thesaurus" von dem (zumindest im angelsächsischen Raum) weit öfter mit dem Thesaurusbegriff assoziierten "reference thesaurus" abgegrenzt, einem nach begrifflicher Ähnlichkeit angeordneten Synonymenwörterbuch, das gerne als Mittel zur stilistischen Verbesserung beim Abfassen von (wissenschaftlichen) Arbeiten verwendet wird. Ohne noch ins Detail zu gehen, werden optische Erscheinungsform und Anwendungsgebiete von Thesauren vorgestellt, der Thesaurus als postkoordinierte Indexierungssprache erläutert und seine Nähe zu facettierten Klassifikationssystemen erwähnt. In der Folge stellt Broughton die systematisch organisierten Systeme (Klassifikation/ Taxonomie, Begriffs-/Themendiagramme, Ontologien) den alphabetisch angeordneten, wortbasierten (Schlagwortlisten, thesaurusartige Schlagwortsysteme und Thesauren im eigentlichen Sinn) gegenüber, was dem Leser weitere Einordnungshilfen schafft. Die Anwendungsmöglichkeiten von Thesauren als Mittel der Erschliessung (auch als Quelle für Metadatenangaben bei elektronischen bzw. Web-Dokumenten) und der Recherche (Suchformulierung, Anfrageerweiterung, Browsing und Navigieren) kommen ebenso zur Sprache wie die bei der Verwendung natürlichsprachiger Indexierungssysteme auftretenden Probleme. Mit Beispielen wird ausdrücklich auf die mehr oder weniger starke fachliche Spezialisierung der meisten dieser Vokabularien hingewiesen, wobei auch Informationsquellen über Thesauren (z.B. www.taxonomywarehouse.com) sowie Thesauren für nicht-textuelle Ressourcen kurz angerissen werden.
  20. Broughton, V.: Essential classification (2004) 0.00
    0.0030652853 = product of:
      0.0061305705 = sum of:
        0.0061305705 = product of:
          0.012261141 = sum of:
            0.012261141 = weight(_text_:web in 2824) [ClassicSimilarity], result of:
              0.012261141 = score(doc=2824,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.07211407 = fieldWeight in 2824, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2824)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Footnote
    Essential Classification is also an exercise book. Indeed, it contains a number of practical exercises and activities in every chapter, along with suggested answers. Unfortunately, the answers are too often provided without the justifications and explanations that students would no doubt demand. The author has taken great care to explain all technical terms in her text, but formal definitions are also gathered in an extensive 172-term Glossary; appropriately, these terms appear in bold type the first time they are used in the text. A short, very short, annotated bibliography of standard classification textbooks and of manuals for the use of major classification schemes is provided. A detailed 11-page index completes the set of learning aids which will be useful to an audience of students in their effort to grasp the basic concepts of the theory and the practice of document classification in a traditional environment. Essential Classification is a fine textbook. However, this reviewer deplores the fact that it presents only a very "traditional" view of classification, without much reference to newer environments such as the Internet where classification also manifests itself in various forms. In Essential Classification, books are always used as examples, and we have to take the author's word that traditional classification practices and tools can also be applied to other types of documents and elsewhere than in the traditional library. Vanda Broughton writes, for example, that "Subject headings can't be used for physical arrangement" (p. 101), but this is not entirely true. Subject headings can be used for physical arrangement of vertical files, for example, with each folder bearing a simple or complex heading which is then used for internal organization. And if it is true that subject headings cannot be reproduced an the spine of [physical] books (p. 93), the situation is certainly different an the World Wide Web where subject headings as metadata can be most useful in ordering a collection of hot links. The emphasis is also an the traditional paperbased, rather than an the electronic version of classification schemes, with excellent justifications of course. The reality is, however, that supporting organizations (LC, OCLC, etc.) are now providing great quality services online, and that updates are now available only in an electronic format and not anymore on paper. E-based versions of classification schemes could be safely ignored in a theoretical text, but they have to be described and explained in a textbook published in 2005. One last comment: Professor Broughton tends to use the same term, "classification" to represent the process (as in classification is grouping) and the tool (as in constructing a classification, using a classification, etc.). Even in the Glossary where classification is first well-defined as a process, and classification scheme as "a set of classes ...", the definition of classification scheme continues: "the classification consists of a vocabulary (...) and syntax..." (p. 296-297). Such an ambiguous use of the term classification seems unfortunate and unnecessarily confusing in an otherwise very good basic textbook an categorization of concepts and subjects, document organization and subject representation."

Years

Types