Search (6 results, page 1 of 1)

  • × theme_ss:"Internet"
  • × author_ss:"Vaughan, L."
  1. Vaughan, L.; Shaw , D.: Bibliographic and Web citations : what Is the difference? (2003) 0.03
    0.027630107 = product of:
      0.055260215 = sum of:
        0.055260215 = product of:
          0.11052043 = sum of:
            0.11052043 = weight(_text_:web in 5176) [ClassicSimilarity], result of:
              0.11052043 = score(doc=5176,freq=26.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.65002745 = fieldWeight in 5176, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5176)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Vaughn, and Shaw look at the relationship between traditional citation and Web citation (not hyperlinks but rather textual mentions of published papers). Using English language research journals in ISI's 2000 Journal Citation Report - Information and Library Science category - 1209 full length papers published in 1997 in 46 journals were identified. Each was searched in Social Science Citation Index and on the Web using Google phrase search by entering the title in quotation marks, and followed for distinction where necessary with sub-titles, author's names, and journal title words. After removing obvious false drops, the number of web sites was recorded for comparison with the SSCI counts. A second sample from 1992 was also collected for examination. There were a total of 16,371 web citations to the selected papers. The top and bottom ranked four journals were then examined and every third citation to every third paper was selected and classified as to source type, domain, and country of origin. Web counts are much higher than ISI citation counts. Of the 46 journals from 1997, 26 demonstrated a significant correlation between Web and traditional citation counts, and 11 of the 15 in the 1992 sample also showed significant correlation. Journal impact factor in 1998 and 1999 correlated significantly with average Web citations per journal in the 1997 data, but at a low level. Thirty percent of web citations come from other papers posted on the web, and 30percent from listings of web based bibliographic services, while twelve percent come from class reading lists. High web citation journals often have web accessible tables of content.
  2. Vaughan, L.; Shaw, D.: Web citation data for impact assessment : a comparison of four science disciplines (2005) 0.02
    0.024233207 = product of:
      0.048466414 = sum of:
        0.048466414 = product of:
          0.09693283 = sum of:
            0.09693283 = weight(_text_:web in 3880) [ClassicSimilarity], result of:
              0.09693283 = score(doc=3880,freq=20.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.5701118 = fieldWeight in 3880, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3880)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The number and type of Web citations to journal articles in four areas of science are examined: biology, genetics, medicine, and multidisciplinary sciences. For a sample of 5,972 articles published in 114 journals, the median Web citation counts per journal article range from 6.2 in medicine to 10.4 in genetics. About 30% of Web citations in each area indicate intellectual impact (citations from articles or class readings, in contrast to citations from bibliographic services or the author's or journal's home page). Journals receiving more Web citations also have higher percentages of citations indicating intellectual impact. There is significant correlation between the number of citations reported in the databases from the Institute for Scientific Information (ISI, now Thomson Scientific) and the number of citations retrieved using the Google search engine (Web citations). The correlation is much weaker for journals published outside the United Kingdom or United States and for multidisciplinary journals. Web citation numbers are higher than ISI citation counts, suggesting that Web searches might be conducted for an earlier or a more fine-grained assessment of an article's impact. The Web-evident impact of non-UK/USA publications might provide a balance to the geographic or cultural biases observed in ISI's data, although the stability of Web citation counts is debatable.
  3. Vaughan, L.; Thelwall, M.: Scholarly use of the Web : what are the key inducers of links to journal Web sites? (2003) 0.02
    0.022989638 = product of:
      0.045979276 = sum of:
        0.045979276 = product of:
          0.09195855 = sum of:
            0.09195855 = weight(_text_:web in 1236) [ClassicSimilarity], result of:
              0.09195855 = score(doc=1236,freq=18.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.5408555 = fieldWeight in 1236, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1236)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Web links have been studied by information scientists for at least six years but it is only in the past two that clear evidence has emerged to show that counts of links to scholarly Web spaces (universities and departments) can correlate significantly with research measures, giving some credence to their use for the investigation of scholarly communication. This paper reports an a study to investigate the factors that influence the creation of links to journal Web sites. An empirical approach is used: collecting data and testing for significant patterns. The specific questions addressed are whether site age and site content are inducers of links to a journal's Web site as measured by the ratio of link counts to Journal Impact Factors, two variables previously discovered to be related. A new methodology for data collection is also introduced that uses the Internet Archive to obtain an earliest known creation date for Web sites. The results show that both site age and site content are significant factors for the disciplines studied: library and information science, and law. Comparisons between the two fields also show disciplinary differences in Web site characteristics. Scholars and publishers should be particularly aware that richer content an a journal's Web site tends to generate links and thus the traffic to the site.
  4. Thelwall, M.; Vaughan, L.; Björneborn, L.: Webometrics (2004) 0.02
    0.022989638 = product of:
      0.045979276 = sum of:
        0.045979276 = product of:
          0.09195855 = sum of:
            0.09195855 = weight(_text_:web in 4279) [ClassicSimilarity], result of:
              0.09195855 = score(doc=4279,freq=18.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.5408555 = fieldWeight in 4279, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4279)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Webometrics, the quantitative study of Web-related phenomena, emerged from the realization that methods originally designed for bibliometric analysis of scientific journal article citation patterns could be applied to the Web, with commercial search engines providing the raw data. Almind and Ingwersen (1997) defined the field and gave it its name. Other pioneers included Rodriguez Gairin (1997) and Aguillo (1998). Larson (1996) undertook exploratory link structure analysis, as did Rousseau (1997). Webometrics encompasses research from fields beyond information science such as communication studies, statistical physics, and computer science. In this review we concentrate on link analysis, but also cover other aspects of webometrics, including Web log fle analysis. One theme that runs through this chapter is the messiness of Web data and the need for data cleansing heuristics. The uncontrolled Web creates numerous problems in the interpretation of results, for instance, from the automatic creation or replication of links. The loose connection between top-level domain specifications (e.g., com, edu, and org) and their actual content is also a frustrating problem. For example, many .com sites contain noncommercial content, although com is ostensibly the main commercial top-level domain. Indeed, a skeptical researcher could claim that obstacles of this kind are so great that all Web analyses lack value. As will be seen, one response to this view, a view shared by critics of evaluative bibliometrics, is to demonstrate that Web data correlate significantly with some non-Web data in order to prove that the Web data are not wholly random. A practical response has been to develop increasingly sophisticated data cleansing techniques and multiple data analysis methods.
  5. Vaughan, L.: Visualizing linguistic and cultural differences using Web co-link data (2006) 0.02
    0.022525156 = product of:
      0.04505031 = sum of:
        0.04505031 = product of:
          0.09010062 = sum of:
            0.09010062 = weight(_text_:web in 184) [ClassicSimilarity], result of:
              0.09010062 = score(doc=184,freq=12.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.5299281 = fieldWeight in 184, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=184)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The study examined Web co-links to Canadian university Web sites. Multidimensional scaling (MDS) was used to analyze and visualize co-link data as was done in co-citation analysis. Co-link data were collected in ways that would reflect three different views, the global view, the French Canada view, and the English Canada view. Mapping results of the three data sets accurately reflected the ways Canadians see the universities and clearly showed the linguistic and cultural differences within Canadian society. This shows that Web co-linking is not a random phenomenon and that co-link data contain useful information for Web data mining. It is proposed that the method developed in the study can be applied to other contexts such as analyzing relationships of different organizations or countries. This kind of research is promising because of the dynamics and the diversity of the Web.
  6. Thelwall, M.; Vaughan, L.: Webometrics : an introduction to the special issue (2004) 0.01
    0.012261141 = product of:
      0.024522282 = sum of:
        0.024522282 = product of:
          0.049044564 = sum of:
            0.049044564 = weight(_text_:web in 2908) [ClassicSimilarity], result of:
              0.049044564 = score(doc=2908,freq=2.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.2884563 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Webometrics, the quantitative study of Web phenomena, is a field encompassing contributions from information science, computer science, and statistical physics. Its methodology draws especially from bibliometrics. This special issue presents contributions that both push for ward the field and illustrate a wide range of webometric approaches.