Search (133 results, page 1 of 7)

  • × year_i:[2000 TO 2010}
  • × theme_ss:"Informetrie"
  1. Kousha, K.; Thelwall, M.: How is science cited on the Web? : a classification of google unique Web citations (2007) 0.07
    0.06611301 = product of:
      0.13222602 = sum of:
        0.13222602 = sum of:
          0.09693283 = weight(_text_:web in 586) [ClassicSimilarity], result of:
            0.09693283 = score(doc=586,freq=20.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.5701118 = fieldWeight in 586, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=586)
          0.03529319 = weight(_text_:22 in 586) [ClassicSimilarity], result of:
            0.03529319 = score(doc=586,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19345059 = fieldWeight in 586, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=586)
      0.5 = coord(1/2)
    
    Abstract
    Although the analysis of citations in the scholarly literature is now an established and relatively well understood part of information science, not enough is known about citations that can be found on the Web. In particular, are there new Web types, and if so, are these trivial or potentially useful for studying or evaluating research communication? We sought evidence based upon a sample of 1,577 Web citations of the URLs or titles of research articles in 64 open-access journals from biology, physics, chemistry, and computing. Only 25% represented intellectual impact, from references of Web documents (23%) and other informal scholarly sources (2%). Many of the Web/URL citations were created for general or subject-specific navigation (45%) or for self-publicity (22%). Additional analyses revealed significant disciplinary differences in the types of Google unique Web/URL citations as well as some characteristics of scientific open-access publishing on the Web. We conclude that the Web provides access to a new and different type of citation information, one that may therefore enable us to measure different aspects of research, and the research process in particular; but to obtain good information, the different types should be separated.
  2. Meho, L.I.; Rogers, Y.: Citation counting, citation ranking, and h-index of human-computer interaction researchers : a comparison of Scopus and Web of Science (2008) 0.06
    0.05819651 = product of:
      0.11639302 = sum of:
        0.11639302 = sum of:
          0.08109983 = weight(_text_:web in 2352) [ClassicSimilarity], result of:
            0.08109983 = score(doc=2352,freq=14.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.47698978 = fieldWeight in 2352, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2352)
          0.03529319 = weight(_text_:22 in 2352) [ClassicSimilarity], result of:
            0.03529319 = score(doc=2352,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19345059 = fieldWeight in 2352, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2352)
      0.5 = coord(1/2)
    
    Abstract
    This study examines the differences between Scopus and Web of Science in the citation counting, citation ranking, and h-index of 22 top human-computer interaction (HCI) researchers from EQUATOR - a large British Interdisciplinary Research Collaboration project. Results indicate that Scopus provides significantly more coverage of HCI literature than Web of Science, primarily due to coverage of relevant ACM and IEEE peer-reviewed conference proceedings. No significant differences exist between the two databases if citations in journals only are compared. Although broader coverage of the literature does not significantly alter the relative citation ranking of individual researchers, Scopus helps distinguish between the researchers in a more nuanced fashion than Web of Science in both citation counting and h-index. Scopus also generates significantly different maps of citation networks of individual scholars than those generated by Web of Science. The study also presents a comparison of h-index scores based on Google Scholar with those based on the union of Scopus and Web of Science. The study concludes that Scopus can be used as a sole data source for citation-based research and evaluation in HCI, especially when citations in conference proceedings are sought, and that researchers should manually calculate h scores instead of relying on system calculations.
    Object
    Web of Science
  3. H-Index auch im Web of Science (2008) 0.05
    0.053031296 = product of:
      0.10606259 = sum of:
        0.10606259 = sum of:
          0.063710764 = weight(_text_:web in 590) [ClassicSimilarity], result of:
            0.063710764 = score(doc=590,freq=6.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.37471575 = fieldWeight in 590, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=590)
          0.042351827 = weight(_text_:22 in 590) [ClassicSimilarity], result of:
            0.042351827 = score(doc=590,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 590, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=590)
      0.5 = coord(1/2)
    
    Content
    "Zur Kurzmitteilung "Latest enhancements in Scopus: ... h-Index incorporated in Scopus" in den letzten Online-Mitteilungen (Online-Mitteilungen 92, S.31) ist zu korrigieren, dass der h-Index sehr wohl bereits im Web of Science enthalten ist. Allerdings findet man/frau diese Information nicht in der "cited ref search", sondern neben der Trefferliste einer Quick Search, General Search oder einer Suche über den Author Finder in der rechten Navigationsleiste unter dem Titel "Citation Report". Der "Citation Report" bietet für die in der jeweiligen Trefferliste angezeigten Arbeiten: - Die Gesamtzahl der Zitierungen aller Arbeiten in der Trefferliste - Die mittlere Zitationshäufigkeit dieser Arbeiten - Die Anzahl der Zitierungen der einzelnen Arbeiten, aufgeschlüsselt nach Publikationsjahr der zitierenden Arbeiten - Die mittlere Zitationshäufigkeit dieser Arbeiten pro Jahr - Den h-Index (ein h-Index von x sagt aus, dass x Arbeiten der Trefferliste mehr als x-mal zitiert wurden; er ist gegenüber sehr hohen Zitierungen einzelner Arbeiten unempfindlicher als die mittlere Zitationshäufigkeit)."
    Date
    6. 4.2008 19:04:22
    Object
    Web of Science
  4. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.05
    0.048338976 = product of:
      0.09667795 = sum of:
        0.09667795 = sum of:
          0.03678342 = weight(_text_:web in 2763) [ClassicSimilarity], result of:
            0.03678342 = score(doc=2763,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.21634221 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
          0.059894532 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.059894532 = score(doc=2763,freq=4.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.32829654 = fieldWeight in 2763, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2763)
      0.5 = coord(1/2)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35
  5. Zhang, Y.; Jansen, B.J.; Spink, A.: Identification of factors predicting clickthrough in Web searching using neural network analysis (2009) 0.05
    0.04718572 = product of:
      0.09437144 = sum of:
        0.09437144 = sum of:
          0.052019615 = weight(_text_:web in 2742) [ClassicSimilarity], result of:
            0.052019615 = score(doc=2742,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.3059541 = fieldWeight in 2742, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=2742)
          0.042351827 = weight(_text_:22 in 2742) [ClassicSimilarity], result of:
            0.042351827 = score(doc=2742,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 2742, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2742)
      0.5 = coord(1/2)
    
    Abstract
    In this research, we aim to identify factors that significantly affect the clickthrough of Web searchers. Our underlying goal is determine more efficient methods to optimize the clickthrough rate. We devise a clickthrough metric for measuring customer satisfaction of search engine results using the number of links visited, number of queries a user submits, and rank of clicked links. We use a neural network to detect the significant influence of searching characteristics on future user clickthrough. Our results show that high occurrences of query reformulation, lengthy searching duration, longer query length, and the higher ranking of prior clicked links correlate positively with future clickthrough. We provide recommendations for leveraging these findings for improving the performance of search engine retrieval and result ranking, along with implications for search engine marketing.
    Date
    22. 3.2009 17:49:11
  6. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.04
    0.04028248 = product of:
      0.08056496 = sum of:
        0.08056496 = sum of:
          0.030652853 = weight(_text_:web in 2734) [ClassicSimilarity], result of:
            0.030652853 = score(doc=2734,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.18028519 = fieldWeight in 2734, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2734)
          0.049912106 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
            0.049912106 = score(doc=2734,freq=4.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.27358043 = fieldWeight in 2734, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2734)
      0.5 = coord(1/2)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
  7. He, Z.-L.: International collaboration does not have greater epistemic authority (2009) 0.04
    0.039567623 = product of:
      0.07913525 = sum of:
        0.07913525 = sum of:
          0.03678342 = weight(_text_:web in 3122) [ClassicSimilarity], result of:
            0.03678342 = score(doc=3122,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.21634221 = fieldWeight in 3122, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.046875 = fieldNorm(doc=3122)
          0.042351827 = weight(_text_:22 in 3122) [ClassicSimilarity], result of:
            0.042351827 = score(doc=3122,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.23214069 = fieldWeight in 3122, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3122)
      0.5 = coord(1/2)
    
    Abstract
    The consistent finding that internationally coauthored papers are more heavily cited has led to a tacit agreement among politicians and scientists that international collaboration in scientific research should be particularly promoted. However, existing studies of research collaboration suffer from a major weakness in that the Thomson Reuters Web of Science until recently did not link author names with affiliation addresses. The general approach has been to hierarchically code papers into international paper, national paper, or local paper based on the address information. This hierarchical coding scheme severely understates the level and contribution of local or national collaboration on an internationally coauthored paper. In this research, I code collaboration variables by hand checking each paper in the sample, use two measures of a paper's impact, and try several regression models. I find that both international collaboration and local collaboration are positively and significantly associated with a paper's impact, but international collaboration does not have more epistemic authority than local collaboration. This result suggests that previous findings based on hierarchical coding might be misleading.
    Date
    26. 9.2009 11:22:05
  8. Hayer, L.: Lazarsfeld zitiert : eine bibliometrische Analyse (2008) 0.04
    0.039321437 = product of:
      0.078642875 = sum of:
        0.078642875 = sum of:
          0.04334968 = weight(_text_:web in 1934) [ClassicSimilarity], result of:
            0.04334968 = score(doc=1934,freq=4.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.25496176 = fieldWeight in 1934, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1934)
          0.03529319 = weight(_text_:22 in 1934) [ClassicSimilarity], result of:
            0.03529319 = score(doc=1934,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19345059 = fieldWeight in 1934, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1934)
      0.5 = coord(1/2)
    
    Abstract
    Um sich einer Antwort auf die Frage anzunähern, welche Bedeutung der Nachlass eines Wissenschaftlers wie jener Paul F. Lazarsfelds (mit zahlreichen noch unveröffentlichten Schriften) für die aktuelle Forschung haben könne, kann untersucht werden, wie häufig dieser Wissenschaftler zitiert wird. Wenn ein Autor zitiert wird, wird er auch genutzt. Wird er über einen langen Zeitraum oft genutzt, ist vermutlich auch die Auseinandersetzung mit seinem Nachlass von Nutzen. Außerdem kann aufgrund der Zitierungen festgestellt werden, was aus dem Lebenswerk eines Wissenschaftlers für die aktuelle Forschung relevant erscheint. Daraus können die vordringlichen Fragestellungen in der Bearbeitung des Nachlasses abgeleitet werden. Die Aufgabe für die folgende Untersuchung lautete daher: Wie oft wird Paul F. Lazarsfeld zitiert? Dabei interessierte auch: Wer zitiert wo? Die Untersuchung wurde mit Hilfe der Meta-Datenbank "ISI Web of Knowledge" durchgeführt. In dieser wurde im "Web of Science" mit dem Werkzeug "Cited Reference Search" nach dem zitierten Autor (Cited Author) "Lazarsfeld P*" gesucht. Diese Suche ergab 1535 Referenzen (References). Werden alle Referenzen gewählt, führt dies zu 4839 Ergebnissen (Results). Dabei wurden die Datenbanken SCI-Expanded, SSCI und A&HCI verwendet. Bei dieser Suche wurden die Publikationsjahre 1941-2008 analysiert. Vor 1956 wurden allerdings nur sehr wenige Zitate gefunden: 1946 fünf, ansonsten maximal drei, 1942-1944 und 1949 überhaupt keines. Zudem ist das Jahr 2008 noch lange nicht zu Ende. (Es gab jedoch schon vor Ende März 24 Zitate!)
    Date
    22. 6.2008 12:54:12
  9. Mukherjee, B.: Do open-access journals in library and information science have any scholarly impact? : a bibliometric study of selected open-access journals using Google Scholar (2009) 0.03
    0.03297302 = product of:
      0.06594604 = sum of:
        0.06594604 = sum of:
          0.030652853 = weight(_text_:web in 2745) [ClassicSimilarity], result of:
            0.030652853 = score(doc=2745,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.18028519 = fieldWeight in 2745, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2745)
          0.03529319 = weight(_text_:22 in 2745) [ClassicSimilarity], result of:
            0.03529319 = score(doc=2745,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.19345059 = fieldWeight in 2745, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2745)
      0.5 = coord(1/2)
    
    Abstract
    Using 17 fully open-access journals published uninterruptedly during 2000 to 2004 in the field of library and information science, the present study investigates the impact of these open-access journals in terms of quantity of articles published, subject distribution of the articles, synchronous and diachronous impact factor, immediacy index, and journals' and authors' self-citation. The results indicate that during this 5-year publication period, there are as many as 1,636 articles published by these journals. At the same time, the articles have received a total of 8,591 Web citations during a 7-year citation period. Eight of 17 journals have received more than 100 citations. First Monday received the highest number of citations; however, the average number of citations per article was the highest in D-Lib Magazine. The value of the synchronous impact factor varies from 0.6989 to 1.0014 during 2002 to 2005, and the diachronous impact factor varies from 1.472 to 2.487 during 2000 to 2004. The range of the immediacy index varies between 0.0714 and 1.395. D-Lib Magazine has an immediacy index value above 0.5 in all the years whereas the immediacy index value varies from year to year for the other journals. When the citations of sample articles were analyzed according to source, it was found that 40.32% of the citations came from full-text articles, followed by 33.35% from journal articles. The percentage of journals' self-citation was only 6.04%.
    Date
    22. 3.2009 17:54:59
  10. Koehler, W.: Web page change and persistence : a four-year longitudinal study (2002) 0.03
    0.030499205 = product of:
      0.06099841 = sum of:
        0.06099841 = product of:
          0.12199682 = sum of:
            0.12199682 = weight(_text_:web in 203) [ClassicSimilarity], result of:
              0.12199682 = score(doc=203,freq=22.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.717526 = fieldWeight in 203, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=203)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Changes in the topography of the Web can be expressed in at least four ways: (1) more sites on more servers in more places, (2) more pages and objects added to existing sites and pages, (3) changes in traffic, and (4) modifications to existing text, graphic, and other Web objects. This article does not address the first three factors (more sites, more pages, more traffic) in the growth of the Web. It focuses instead on changes to an existing set of Web documents. The article documents changes to an aging set of Web pages, first identified and "collected" in December 1996 and followed weekly thereafter. Results are reported through February 2001. The article addresses two related phenomena: (1) the life cycle of Web objects, and (2) changes to Web objects. These data reaffirm that the half-life of a Web page is approximately 2 years. There is variation among Web pages by top-level domain and by page type (navigation, content). Web page content appears to stabilize over time; aging pages change less often than once they did
  11. Park, H.W.; Barnett, G.A.; Nam, I.-Y.: Hyperlink - affiliation network structure of top Web sites : examining affiliates with hyperlink in Korea (2002) 0.03
    0.030344777 = product of:
      0.060689554 = sum of:
        0.060689554 = product of:
          0.12137911 = sum of:
            0.12137911 = weight(_text_:web in 584) [ClassicSimilarity], result of:
              0.12137911 = score(doc=584,freq=16.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.71389294 = fieldWeight in 584, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=584)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article argues that individual Web sites form hyperlink-affiliations with others for the purpose of strengthening their individual trust, expertness, and safety. It describes the hyperlink-affiliation network structure of Korea's top 152 Web sites. The data were obtained from their Web sites for October 2000. The results indicate that financial Web sites, such as credit card and stock Web sites, occupy the most central position in the network. A cluster analysis reveals that the structure of the hyperlink-affiliation network is influenced by the financial Web sites with which others are affiliated. These findings are discussed from the perspective of Web site credibility.
  12. Impe, S. van; Rousseau, R.: Web-to-print citations and the humanities (2006) 0.03
    0.029079849 = product of:
      0.058159698 = sum of:
        0.058159698 = product of:
          0.116319396 = sum of:
            0.116319396 = weight(_text_:web in 82) [ClassicSimilarity], result of:
              0.116319396 = score(doc=82,freq=20.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6841342 = fieldWeight in 82, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    References to printed documents made on the web are called web-to-print references. These printed documents then in turn receive web-to-print citations. Webto-print citations and web-to-print references are the topic of this article, in which we study the online impact of printed sources. Web-to-print citations are discussed from a structural point of view and a small-scale experiment related to web-to-print citations for local history journals is performed. The main research question in setting up this experiment concerns the possibility of using web-to-print citations as a substitute for classical citation indexes by gauging the importance, visibility and impact of journals in the humanities. Results show the importance of web bibliographies in the field, but, at least for what concerns the journals and the period studied here, the amount of received web-to-print citations is too small to draw general conclusions.
  13. Cothey, V.: Web-crawling reliability (2004) 0.03
    0.02838494 = product of:
      0.05676988 = sum of:
        0.05676988 = product of:
          0.11353976 = sum of:
            0.11353976 = weight(_text_:web in 3089) [ClassicSimilarity], result of:
              0.11353976 = score(doc=3089,freq=14.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6677857 = fieldWeight in 3089, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3089)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article, I investigate the reliability, in the social science sense, of collecting informetric data about the World Wide Web by Web crawling. The investigation includes a critical examination of the practice of Web crawling and contrasts the results of content crawling with the results of link crawling. It is shown that Web crawling by search engines is intentionally biased and selective. I also report the results of a [arge-scale experimental simulation of Web crawling that illustrates the effects of different crawling policies an data collection. It is concluded that the reliability of Web crawling as a data collection technique is improved by fuller reporting of relevant crawling policies.
  14. Nicolaisen, J.: Citation analysis (2007) 0.03
    0.028234553 = product of:
      0.056469105 = sum of:
        0.056469105 = product of:
          0.11293821 = sum of:
            0.11293821 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.11293821 = score(doc=6091,freq=2.0), product of:
                0.18244034 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052098576 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    13. 7.2008 19:53:22
  15. Vaughan, L.; Shaw , D.: Bibliographic and Web citations : what Is the difference? (2003) 0.03
    0.027630107 = product of:
      0.055260215 = sum of:
        0.055260215 = product of:
          0.11052043 = sum of:
            0.11052043 = weight(_text_:web in 5176) [ClassicSimilarity], result of:
              0.11052043 = score(doc=5176,freq=26.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.65002745 = fieldWeight in 5176, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5176)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Vaughn, and Shaw look at the relationship between traditional citation and Web citation (not hyperlinks but rather textual mentions of published papers). Using English language research journals in ISI's 2000 Journal Citation Report - Information and Library Science category - 1209 full length papers published in 1997 in 46 journals were identified. Each was searched in Social Science Citation Index and on the Web using Google phrase search by entering the title in quotation marks, and followed for distinction where necessary with sub-titles, author's names, and journal title words. After removing obvious false drops, the number of web sites was recorded for comparison with the SSCI counts. A second sample from 1992 was also collected for examination. There were a total of 16,371 web citations to the selected papers. The top and bottom ranked four journals were then examined and every third citation to every third paper was selected and classified as to source type, domain, and country of origin. Web counts are much higher than ISI citation counts. Of the 46 journals from 1997, 26 demonstrated a significant correlation between Web and traditional citation counts, and 11 of the 15 in the 1992 sample also showed significant correlation. Journal impact factor in 1998 and 1999 correlated significantly with average Web citations per journal in the 1997 data, but at a low level. Thirty percent of web citations come from other papers posted on the web, and 30percent from listings of web based bibliographic services, while twelve percent come from class reading lists. High web citation journals often have web accessible tables of content.
  16. Maharana, B.; Nayak, K.; Sahu, N.K.: Scholarly use of web resources in LIS research : a citation analysis (2006) 0.03
    0.027630107 = product of:
      0.055260215 = sum of:
        0.055260215 = product of:
          0.11052043 = sum of:
            0.11052043 = weight(_text_:web in 53) [ClassicSimilarity], result of:
              0.11052043 = score(doc=53,freq=26.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.65002745 = fieldWeight in 53, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=53)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The essential purpose of this paper is to measure the amount of web resources used for scholarly contributions in the area of library and information science (LIS) in India. It further aims to make an analysis of the nature and type of web resources and studies the various standards for web citations. Design/methodology/approach - In this study, the result of analysis of 292 web citations spread over 95 scholarly papers published in the proceedings of the National Conference of the Society for Information Science, India (SIS-2005) has been reported. All the 292 web citations were scanned and data relating to types of web domains, file formats, styles of citations, etc., were collected through a structured check list. The data thus obtained were systematically analyzed, figurative representations were made and appropriate interpretations were drawn. Findings - The study revealed that 292 (34.88 per cent) out of 837 were web citations, proving a significant correlation between the use of Internet resources and research productivity of LIS professionals in India. The highest number of web citations (35.6 per cent) was from .edu/.ac type domains. Most of the web resources (46.9 per cent) cited in the study were hypertext markup language (HTML) files. Originality/value - The paper is the result of an original analysis of web citations undertaken in order to study the dependence of LIS professionals in India on web sources for their scholarly contributions. This carries research value for web content providers, authors and researchers in LIS.
  17. Hong, T.: ¬The influence of structural and message features an Web site credibility (2006) 0.03
    0.027587567 = product of:
      0.055175133 = sum of:
        0.055175133 = product of:
          0.110350266 = sum of:
            0.110350266 = weight(_text_:web in 5787) [ClassicSimilarity], result of:
              0.110350266 = score(doc=5787,freq=18.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.64902663 = fieldWeight in 5787, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5787)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article explores the associations that message features and Web structural features have with perceptions of Web site credibility. In a within-subjects experiment, 84 participants actively located health-related Web sites an the basis of two tasks that differed in task specificity and complexity. Web sites that were deemed most credible were content analyzed for message features and structural features that have been found to be associated with perceptions of source credibility. Regression analyses indicated that message features predicted perceived Web site credibility for both searches when controlling for Internet experience and issue involvement. Advertisements and structural features had no significant effects an perceived Web site credibility. Institutionaffiliated domain names (.gov, org, edu) predicted Web site credibility, but only in the general search, which was more difficult. Implications of results are discussed in terms of online credibility research and Web site design.
  18. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.03
    0.026378417 = product of:
      0.052756835 = sum of:
        0.052756835 = sum of:
          0.024522282 = weight(_text_:web in 5171) [ClassicSimilarity], result of:
            0.024522282 = score(doc=5171,freq=2.0), product of:
              0.17002425 = queryWeight, product of:
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.052098576 = queryNorm
              0.14422815 = fieldWeight in 5171, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.2635105 = idf(docFreq=4597, maxDocs=44218)
                0.03125 = fieldNorm(doc=5171)
          0.028234553 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
            0.028234553 = score(doc=5171,freq=2.0), product of:
              0.18244034 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.052098576 = queryNorm
              0.15476047 = fieldWeight in 5171, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=5171)
      0.5 = coord(1/2)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
  19. Bar-Ilan, J.: ¬The Web as an information source on informetrics? : A content analysis (2000) 0.03
    0.026009807 = product of:
      0.052019615 = sum of:
        0.052019615 = product of:
          0.10403923 = sum of:
            0.10403923 = weight(_text_:web in 4587) [ClassicSimilarity], result of:
              0.10403923 = score(doc=4587,freq=16.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.6119082 = fieldWeight in 4587, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4587)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article addresses the question of whether the Web can serve as an information source for research. Specifically, it analyzes by way of content analysis the Web pages retrieved by the major search engines on a particular date (June 7, 1998), as a result of the query 'informetrics OR informetric'. In 807 out of the 942 retrieved pages, the search terms were mentioned in the context of information science. Over 70% of the pages contained only indirect information on the topic, in the form of hypertext links and bibliographical references without annotation. The bibliographical references extracted from the Web pages were analyzed, and lists of most productive authors, most cited authors, works, and sources were compiled. The list of reference obtained from the Web was also compared to data retrieved from commercial databases. For most cases, the list of references extracted from the Web outperformed the commercial, bibliographic databases. The results of these comparisons indicate that valuable, freely available data is hidden in the Web waiting to be extracted from the millions of Web pages
  20. Thelwall, M.: Conceptualizing documentation on the Web : an evaluation of different heuristic-based models for counting links between university Web sites (2002) 0.03
    0.025416005 = product of:
      0.05083201 = sum of:
        0.05083201 = product of:
          0.10166402 = sum of:
            0.10166402 = weight(_text_:web in 978) [ClassicSimilarity], result of:
              0.10166402 = score(doc=978,freq=22.0), product of:
                0.17002425 = queryWeight, product of:
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.052098576 = queryNorm
                0.59793836 = fieldWeight in 978, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  3.2635105 = idf(docFreq=4597, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=978)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    All known previous Web link studies have used the Web page as the primary indivisible source document for counting purposes. Arguments are presented to explain why this is not necessarily optimal and why other alternatives have the potential to produce better results. This is despite the fact that individual Web files are often the only choice if search engines are used for raw data and are the easiest basic Web unit to identify. The central issue is of defining the Web "document": that which should comprise the single indissoluble unit of coherent material. Three alternative heuristics are defined for the educational arena based upon the directory, the domain and the whole university site. These are then compared by implementing them an a set of 108 UK university institutional Web sites under the assumption that a more effective heuristic will tend to produce results that correlate more highly with institutional research productivity. It was discovered that the domain and directory models were able to successfully reduce the impact of anomalous linking behavior between pairs of Web sites, with the latter being the method of choice. Reasons are then given as to why a document model an its own cannot eliminate all anomalies in Web linking behavior. Finally, the results from all models give a clear confirmation of the very strong association between the research productivity of a UK university and the number of incoming links from its peers' Web sites.

Authors

Languages

  • e 122
  • d 11
  • More… Less…

Types

  • a 131
  • el 2
  • m 2
  • s 1
  • More… Less…