Search (3 results, page 1 of 1)

  • × subject_ss:"Data mining"
  1. Tonkin, E.L.; Tourte, G.J.L.: Working with text. tools, techniques and approaches for text mining (2016) 0.02
    0.024293922 = product of:
      0.048587844 = sum of:
        0.048587844 = product of:
          0.09717569 = sum of:
            0.09717569 = weight(_text_:tagging in 4019) [ClassicSimilarity], result of:
              0.09717569 = score(doc=4019,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.326146 = fieldWeight in 4019, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4019)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
  2. Next generation search engines : advanced models for information retrieval (2012) 0.01
    0.012146961 = product of:
      0.024293922 = sum of:
        0.024293922 = product of:
          0.048587844 = sum of:
            0.048587844 = weight(_text_:tagging in 357) [ClassicSimilarity], result of:
              0.048587844 = score(doc=357,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.163073 = fieldWeight in 357, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=357)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With the rapid growth of web-based applications, such as search engines, Facebook, and Twitter, the development of effective and personalized information retrieval techniques and of user interfaces is essential. The amount of shared information and of social networks has also considerably grown, requiring metadata for new sources of information, like Wikipedia and ODP. These metadata have to provide classification information for a wide range of topics, as well as for social networking sites like Twitter, and Facebook, each of which provides additional preferences, tagging information and social contexts. Due to the explosion of social networks and other metadata sources, it is an opportune time to identify ways to exploit such metadata in IR tasks such as user modeling, query understanding, and personalization, to name a few. Although the use of traditional metadata such as html text, web page titles, and anchor text is fairly well-understood, the use of category information, user behavior data, and geographical information is just beginning to be studied. This book is intended for scientists and decision-makers who wish to gain working knowledge about search engines in order to evaluate available solutions and to dialogue with software and data providers.
  3. Information visualization in data mining and knowledge discovery (2002) 0.00
    0.003418799 = product of:
      0.006837598 = sum of:
        0.006837598 = product of:
          0.013675196 = sum of:
            0.013675196 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.013675196 = score(doc=1789,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    23. 3.2008 19:10:22