Search (22 results, page 1 of 2)

  • × theme_ss:"Folksonomies"
  • × year_i:[2000 TO 2010}
  1. Kim, H.L.; Scerri, S.; Breslin, J.G.; Decker, S.; Kim, H.G.: ¬The state of the art in tag ontologies : a semantic model for tagging and folksonomies (2008) 0.14
    0.13610941 = product of:
      0.27221882 = sum of:
        0.27221882 = sum of:
          0.23803084 = weight(_text_:tagging in 2650) [ClassicSimilarity], result of:
            0.23803084 = score(doc=2650,freq=12.0), product of:
              0.2979515 = queryWeight, product of:
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.05046712 = queryNorm
              0.79889125 = fieldWeight in 2650, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2650)
          0.03418799 = weight(_text_:22 in 2650) [ClassicSimilarity], result of:
            0.03418799 = score(doc=2650,freq=2.0), product of:
              0.17672725 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05046712 = queryNorm
              0.19345059 = fieldWeight in 2650, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2650)
      0.5 = coord(1/2)
    
    Abstract
    There is a growing interest into how we represent and share tagging data in collaborative tagging systems. Conventional tags, meaning freely created tags that are not associated with a structured ontology, are not naturally suited for collaborative processes, due to linguistic and grammatical variations, as well as human typing errors. Additionally, tags reflect personal views of the world by individual users, and are not normalised for synonymy, morphology or any other mapping. Our view is that the conventional approach provides very limited semantic value for collaboration. Moreover, in cases where there is some semantic value, automatically sharing semantics via computer manipulations is extremely problematic. This paper explores these problems by discussing approaches for collaborative tagging activities at a semantic level, and presenting conceptual models for collaborative tagging activities and folksonomies. We present criteria for the comparison of existing tag ontologies and discuss their strengths and weaknesses in relation to these criteria.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Theme
    Social tagging
  2. Catarino, M.E.; Baptista, A.A.: Relating folksonomies with Dublin Core (2008) 0.11
    0.10833117 = product of:
      0.21666235 = sum of:
        0.21666235 = sum of:
          0.16831324 = weight(_text_:tagging in 2652) [ClassicSimilarity], result of:
            0.16831324 = score(doc=2652,freq=6.0), product of:
              0.2979515 = queryWeight, product of:
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.05046712 = queryNorm
              0.5649015 = fieldWeight in 2652, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2652)
          0.048349116 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
            0.048349116 = score(doc=2652,freq=4.0), product of:
              0.17672725 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05046712 = queryNorm
              0.27358043 = fieldWeight in 2652, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2652)
      0.5 = coord(1/2)
    
    Abstract
    Folksonomy is the result of describing Web resources with tags created by Web users. Although it has become a popular application for the description of resources, in general terms Folksonomies are not being conveniently integrated in metadata. However, if the appropriate metadata elements are identified, then further work may be conducted to automatically assign tags to these elements (RDF properties) and use them in Semantic Web applications. This article presents research carried out to continue the project Kinds of Tags, which intends to identify elements required for metadata originating from folksonomies and to propose an application profile for DC Social Tagging. The work provides information that may be used by software applications to assign tags to metadata elements and, therefore, means for tags to be conveniently gathered by metadata interoperability tools. Despite the unquestionably high value of DC and the significance of the already existing properties in DC Terms, the pilot study show revealed a significant number of tags for which no corresponding properties yet existed. A need for new properties, such as Action, Depth, Rate, and Utility was determined. Those potential new properties will have to be validated in a later stage by the DC Social Tagging Community.
    Pages
    S.14-22
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
    Theme
    Social tagging
  3. Simon, D.: Anreicherung bibliothekarischer Titeldaten durch Tagging : Möglichkeiten und Probleme (2007) 0.09
    0.08998595 = product of:
      0.1799719 = sum of:
        0.1799719 = product of:
          0.3599438 = sum of:
            0.3599438 = weight(_text_:tagging in 530) [ClassicSimilarity], result of:
              0.3599438 = score(doc=530,freq=14.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                1.2080618 = fieldWeight in 530, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=530)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Die Arbeit ist die untersucht dier Möglichkeiten von Tagging-Verfahren im Kontext bibliothekarischer Erschließung. Der Verfasser führt dazu in das Thema Social Tagging bzw. Folksonomy ein und erklärt die Funktionsweise von Tagging-Systemen. Die Untersuchung stützt sich im wesentlichen auf eine Analyse des KölnerUniversitätsGesamtkatalogs (KUG), der direktes Tagging durch Katalognutzer ebenso ermöglicht wie die Übernahme von Katalogeinträgen für das System BibSonomy. KUG und BibSonomy werden daher mit ihren Eigenschaften vorgestellt, bevor eine bewertende Analyse der Taggingmöglichkeiten und deren bisheriger tatsächlicher Nutzung vorgenommen wird. Dabei untersucht der Verfasser auch den möglichen Beitrag von Tagging-Verfahren in Ergänzung zu den Ergebnissen von Verfahren der inhaltlichen Erschließung und automatischen Indexierung.
    Theme
    Social tagging
  4. Macgregor, G.; McCulloch, E.: Collaborative tagging as a knowledge organisation and resource discovery tool (2006) 0.08
    0.08415662 = product of:
      0.16831324 = sum of:
        0.16831324 = product of:
          0.33662647 = sum of:
            0.33662647 = weight(_text_:tagging in 764) [ClassicSimilarity], result of:
              0.33662647 = score(doc=764,freq=24.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                1.129803 = fieldWeight in 764, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=764)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of the paper is to provide an overview of the collaborative tagging phenomenon and explore some of the reasons for its emergence. Design/methodology/approach - The paper reviews the related literature and discusses some of the problems associated with, and the potential of, collaborative tagging approaches for knowledge organisation and general resource discovery. A definition of controlled vocabularies is proposed and used to assess the efficacy of collaborative tagging. An exposition of the collaborative tagging model is provided and a review of the major contributions to the tagging literature is presented. Findings - There are numerous difficulties with collaborative tagging systems (e.g. low precision, lack of collocation, etc.) that originate from the absence of properties that characterise controlled vocabularies. However, such systems can not be dismissed. Librarians and information professionals have lessons to learn from the interactive and social aspects exemplified by collaborative tagging systems, as well as their success in engaging users with information management. The future co-existence of controlled vocabularies and collaborative tagging is predicted, with each appropriate for use within distinct information contexts: formal and informal. Research limitations/implications - Librarians and information professional researchers should be playing a leading role in research aimed at assessing the efficacy of collaborative tagging in relation to information storage, organisation, and retrieval, and to influence the future development of collaborative tagging systems. Practical implications - The paper indicates clear areas where digital libraries and repositories could innovate in order to better engage users with information. Originality/value - At time of writing there were no literature reviews summarising the main contributions to the collaborative tagging research or debate.
  5. Morrison, P.J.: Tagging and searching : search retrieval effectiveness of folksonomies on the World Wide Web (2008) 0.08
    0.0788182 = product of:
      0.1576364 = sum of:
        0.1576364 = sum of:
          0.11661082 = weight(_text_:tagging in 2109) [ClassicSimilarity], result of:
            0.11661082 = score(doc=2109,freq=2.0), product of:
              0.2979515 = queryWeight, product of:
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.05046712 = queryNorm
              0.39137518 = fieldWeight in 2109, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.9038734 = idf(docFreq=327, maxDocs=44218)
                0.046875 = fieldNorm(doc=2109)
          0.041025586 = weight(_text_:22 in 2109) [ClassicSimilarity], result of:
            0.041025586 = score(doc=2109,freq=2.0), product of:
              0.17672725 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05046712 = queryNorm
              0.23214069 = fieldWeight in 2109, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2109)
      0.5 = coord(1/2)
    
    Date
    1. 8.2008 12:39:22
  6. Chopin, K.: Finding communities : alternative viewpoints through weblogs and tagging (2008) 0.07
    0.06871359 = product of:
      0.13742718 = sum of:
        0.13742718 = product of:
          0.27485436 = sum of:
            0.27485436 = weight(_text_:tagging in 2341) [ClassicSimilarity], result of:
              0.27485436 = score(doc=2341,freq=16.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.9224802 = fieldWeight in 2341, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2341)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - This paper aims to discuss and test the claim that user-based tagging allows for access to a wider variety of viewpoints than is found using other forms of online searching. Design/methodology/approach - A general overview of the nature of weblogs and user-based tagging is given, along with other relevant concepts. A case is then analyzed where viewpoints towards a specific issue are searched for using both tag searching (Technorati) and general search engine searching (Google and Google Blog Search). Findings - The claim to greater accessibility through user-based tagging is not overtly supported with these experiments. Further results for both general and tag-specific searching goes against some common assumptions about the types of content found on weblogs as opposed to more general web sites. Research limitations/implications - User-based tagging is still not widespread enough to give conclusive data for analysis. As this changes, further research in this area, using a variety of search subjects, is warranted. Originality/value - Although proponents of user-based tagging attribute many qualities to the practice, these qualities have not been properly documented or demonstrated. This paper partially rectifies this gap by testing one of the claims made, that of accessibility to alternate views, thus adding to the discussion on tagging for both researchers and other interested parties.
    Theme
    Social tagging
  7. Noruzi, A.: Folksonomies : (un)controlled vocabulary? (2006) 0.07
    0.06802298 = product of:
      0.13604596 = sum of:
        0.13604596 = product of:
          0.27209193 = sum of:
            0.27209193 = weight(_text_:tagging in 404) [ClassicSimilarity], result of:
              0.27209193 = score(doc=404,freq=8.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.9132088 = fieldWeight in 404, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=404)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Folksonomy, a free-form tagging, is a user-generated classification system of web contents that allows users to tag their favorite web resources with their chosen words or phrases selected from natural language. These tags (also called concepts, categories, facets or entities) can be used to classify web resources and to express users' preferences. Folksonomy-based systems allow users to classify web resources through tagging bookmarks, photos or other web resources and saving them to a public web site like Del.icio.us. Thus information about web resources and online articles can be shared in an easy way. The purpose of this study is to provide an overview of the folksonomy tagging phenomenon (also called social tagging and social bookmarking) and explore some of the reasons why we need controlled vocabularies, discussing the problems associated with folksonomy.
  8. Voss, J.: Collaborative thesaurus tagging the Wikipedia way (2006) 0.07
    0.067325294 = product of:
      0.13465059 = sum of:
        0.13465059 = product of:
          0.26930118 = sum of:
            0.26930118 = weight(_text_:tagging in 620) [ClassicSimilarity], result of:
              0.26930118 = score(doc=620,freq=6.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.9038424 = fieldWeight in 620, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0625 = fieldNorm(doc=620)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper explores the system of categories that is used to classify articles in Wikipedia. It is compared to collaborative tagging systems like del.icio.us and to hierarchical classification like the Dewey Decimal Classification (DDC). Specifics and commonalities of these systems of subject indexing are exposed. Analysis of structural and statistical properties (descriptors per record, records per descriptor, descriptor levels) shows that the category system of Wikimedia is a thesaurus that combines collaborative tagging and hierarchical subject indexing in a special way.
  9. Güntner, G.; Sint, R.; Westenthaler, R.: ¬Ein Ansatz zur Unterstützung traditioneller Klassifikation durch Social Tagging (2008) 0.07
    0.06518744 = product of:
      0.13037488 = sum of:
        0.13037488 = product of:
          0.26074976 = sum of:
            0.26074976 = weight(_text_:tagging in 2897) [ClassicSimilarity], result of:
              0.26074976 = score(doc=2897,freq=10.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.8751416 = fieldWeight in 2897, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2897)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Der vorliegende Beitrag stellt einen Ansatz zur Kombination von traditionellen, geschlossenen Klassifikationsverfahren mit offenen, auf Social Tagging basierenden Klassifikationsverfahren vor. Die Darstellung geht von den grundsätzlichen Anforderungen an die Suche und Navigation in Dokumentenarchiven aus, erörtert die Vor- und Nachteile von geschlossenen und offenen Klassifikationsansätzen und präsentiert schließlich einen kombinierten Lösungsansatz, der im Rahmen eines Prototypen umgesetzt wurde. Der Lösungsansatz sieht vor, dass Dokumente grundsätzlich mit freien Tags klassifiziert werden können: Die Klassifikation wird jedoch durch ein kontrolliertes Vokabular unterstützt. Freie Tags werden in einem nachgeordneten, moderierten Prozess in das kontrollierte Vokabular übernommen. Das auf diese Weise wachsende und laufend gepflegte Vokabular unterstützt die Suche und Navigation im Dokumentenraum.
    Footnote
    Beitrag der Tagung "Social Tagging in der Wissensorganisation" am 21.-22.02.2008 am Institut für Wissensmedien (IWM) in Tübingen.
    Source
    Good tags - bad tags: Social Tagging in der Wissensorganisation. Hrsg.: B. Gaiser, u.a
    Theme
    Social tagging
  10. Munk, T.B.; Moerk, K.: Folksonomies, tagging communities, and tagging strategies : an empirical study (2007) 0.06
    0.05950771 = product of:
      0.11901542 = sum of:
        0.11901542 = product of:
          0.23803084 = sum of:
            0.23803084 = weight(_text_:tagging in 1091) [ClassicSimilarity], result of:
              0.23803084 = score(doc=1091,freq=12.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.79889125 = fieldWeight in 1091, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1091)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The subject of this article is folksonomies on the Internet. One of the largest folksonomies on the Internet in terms of number of users and tagged websites is the computer program del.icio.us, where more than 100,000 people have tagged the websites that they and others find using their own keywords. How this is done in practice and the patterns to be found are the focus of this article. The empirical basis is the collection of 76,601 different keywords with a total frequency of 178,215 from 500 randomly chosen taggers on del.icio.us at the end of 2005. The keywords collected were then analyzed quantitatively statistically by uncovering their frequency and percentage distribution and through a statistical correspondence analysis in order to uncover possible patterns in the users' tags. Subsequently, a qualitative textual analysis of the tags was made in order to find out by analysis which tagging strategies are represented in the data material. This led to four conclusions. 1) the distribution of keywords follows classic power law; 2) distinct tagging communities are identifiable; 3) the most frequently used tags are situated on a general-specific axis; and 4) nine distinct tagging strategies are observed. These four conclusions are put into perspective collectively in respect of a number of more general and theoretical considerations concerning folksonomies and the classification systems of the future.
    Theme
    Social tagging
  11. Tennis, J.T.: Social tagging and the next steps for indexing (2006) 0.06
    0.05830541 = product of:
      0.11661082 = sum of:
        0.11661082 = product of:
          0.23322164 = sum of:
            0.23322164 = weight(_text_:tagging in 570) [ClassicSimilarity], result of:
              0.23322164 = score(doc=570,freq=2.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.78275037 = fieldWeight in 570, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.09375 = fieldNorm(doc=570)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  12. Furner, J.: Folksonomies (2009) 0.05
    0.05497087 = product of:
      0.10994174 = sum of:
        0.10994174 = product of:
          0.21988349 = sum of:
            0.21988349 = weight(_text_:tagging in 3857) [ClassicSimilarity], result of:
              0.21988349 = score(doc=3857,freq=4.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.7379842 = fieldWeight in 3857, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3857)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Folksonomies are indexing languages that emerge from the distributed resource-description activity of multiple agents who make use of online tagging services to assign tags (i.e., category labels) to the resources in collections. Although individuals' motivations for engaging in tagging activity vary widely, folksonomy-based retrieval systems can be evaluated by measuring the degree to which taggers and searchers agree on tag-resource pairings.
  13. Trant, J.: Exploring the potential for social tagging and folksonomy in art museums : proof of concept (2006) 0.05
    0.051420543 = product of:
      0.10284109 = sum of:
        0.10284109 = product of:
          0.20568217 = sum of:
            0.20568217 = weight(_text_:tagging in 5900) [ClassicSimilarity], result of:
              0.20568217 = score(doc=5900,freq=14.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.690321 = fieldWeight in 5900, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5900)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Documentation of art museum collections has been traditionally written by and for art historians. To make art museum collections broadly accessible, and to enable art museums to engage their communities, means of access need to reflect the perspectives of other groups and communities. Social Tagging (the collective assignment of keywords to resources) and its resulting Folksonomy (the assemblage of concepts expressed in such a cooperatively developed system of classification) offer ways for art museums to engage with their communities and to understand what users of online museum collections see as important. Proof of Concept studies at The Metropolitan Museum of Art compared terms assigned by trained cataloguers and untrained cataloguers to existing museum documentation, and explored the potential for social tagging to improve access to museum collections. These preliminary studies, the results of which are reported here, have shown the potential of social tagging and folksonomy to open museum collections to new, more personal meanings. Untrained cataloguers identified content elements not described in formal museum documentation. Results from these tests - the first in the domain - provided validation for exploring social tagging and folksonomy as an access strategy within The Metropolitan Museum, motivation to proceed with a broader inter-institutional collaboration, and input into the development of a multi-institutional collaboration exploring tagging in art museums. Tags assigned by users might help bridge the semantic gap between the professional discourse of the curator and the popular language of the museum visitor. The steve collaboration (http://www.steve.museum) is building on these early studies to develop shared tools and research methods that enable social tagging of art museum collections and explore the utility of folksonomy for providing enhanced access to collections.
  14. Yi, K.; Chan, L.M.: Linking folksonomy to Library of Congress subject headings : an exploratory study (2009) 0.04
    0.038870275 = product of:
      0.07774055 = sum of:
        0.07774055 = product of:
          0.1554811 = sum of:
            0.1554811 = weight(_text_:tagging in 3616) [ClassicSimilarity], result of:
              0.1554811 = score(doc=3616,freq=8.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.5218336 = fieldWeight in 3616, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3616)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to investigate the linking of a folksonomy (user vocabulary) and LCSH (controlled vocabulary) on the basis of word matching, for the potential use of LCSH in bringing order to folksonomies. Design/methodology/approach - A selected sample of a folksonomy from a popular collaborative tagging system, Delicious, was word-matched with LCSH. LCSH was transformed into a tree structure called an LCSH tree for the matching. A close examination was conducted on the characteristics of folksonomies, the overlap of folksonomies with LCSH, and the distribution of folksonomies over the LCSH tree. Findings - The experimental results showed that the total proportion of tags being matched with LC subject headings constituted approximately two-thirds of all tags involved, with an additional 10 percent of the remaining tags having potential matches. A number of barriers for the linking as well as two areas in need of improving the matching are identified and described. Three important tag distribution patterns over the LCSH tree were identified and supported: skewedness, multifacet, and Zipfian-pattern. Research limitations/implications - The results of the study can be adopted for the development of innovative methods of mapping between folksonomy and LCSH, which directly contributes to effective access and retrieval of tagged web resources and to the integration of multiple information repositories based on the two vocabularies. Practical implications - The linking of controlled vocabularies can be applicable to enhance information retrieval capability within collaborative tagging systems as well as across various tagging system information depositories and bibliographic databases. Originality/value - This is among frontier works that examines the potential of linking a folksonomy, extracted from a collaborative tagging system, to an authority-maintained subject heading system. It provides exploratory data to support further advanced mapping methods for linking the two vocabularies.
  15. Munk, T.B.; Mork, K.: Folksonomy, the power law & the significance of the least effort (2007) 0.03
    0.034356795 = product of:
      0.06871359 = sum of:
        0.06871359 = product of:
          0.13742718 = sum of:
            0.13742718 = weight(_text_:tagging in 663) [ClassicSimilarity], result of:
              0.13742718 = score(doc=663,freq=4.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.4612401 = fieldWeight in 663, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=663)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The essence of folksonomies is user-created descriptive metadata as opposed to the traditional sender-determined descriptive metadata in taxonomies and faceted classification. We briefly introduce the beginning and principles of folksonomy and discuss the categorizing concept of folksonomies on the basis of the computer program del.icio.us. The selection of the metadata tagged is not accidental, rather tagging follows a pattern that proves to be the pattern for the classic power law, which, in many complex systems is seen to unfold as an imitation-dynamic that creates an asymmetry, where a few descriptive metadata are often reproduced and the majority seldom reproduced. In del.icio.us, it is the very broad and basic subject headings that are often reproduced and achieve power in the system - which in cognitive psychology is called cognitive basic categories - while the small, more specific subject headings are seldom reproduced. The law of power's underlying imitation-dynamic in del.icio.us is explained from the perspective of different theoretical paradigms, i.e. network, economy and cognition. The theorectical and speculative conclusion is that the law of power and asymmetry is biased by a cognitive economizing through a simplification principle in the users construction of descriptive metadata. Free tagging in folksonomies is comparable to empirical experiments in free categorization. Users often choose broad basic categories, because that requires the least cognitive effort. The consequences are that folksonomy is not necessarily a better, more realistic and cheaper method of creating metadata than that which can be generated through taxonomies, faceted classification or search algorithms. Folksonomy as a self-organizing system likely cannot create better and cheaper descriptive metadata.
  16. Shirky, C.: Ontology is overrated : categories, links, and tags (2005) 0.03
    0.034356795 = product of:
      0.06871359 = sum of:
        0.06871359 = product of:
          0.13742718 = sum of:
            0.13742718 = weight(_text_:tagging in 1265) [ClassicSimilarity], result of:
              0.13742718 = score(doc=1265,freq=4.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.4612401 = fieldWeight in 1265, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1265)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Today I want to talk about categorization, and I want to convince you that a lot of what we think we know about categorization is wrong. In particular, I want to convince you that many of the ways we're attempting to apply categorization to the electronic world are actually a bad fit, because we've adopted habits of mind that are left over from earlier strategies. I also want to convince you that what we're seeing when we see the Web is actually a radical break with previous categorization strategies, rather than an extension of them. The second part of the talk is more speculative, because it is often the case that old systems get broken before people know what's going to take their place. (Anyone watching the music industry can see this at work today.) That's what I think is happening with categorization. What I think is coming instead are much more organic ways of organizing information than our current categorization schemes allow, based on two units -- the link, which can point to anything, and the tag, which is a way of attaching labels to links. The strategy of tagging -- free-form labeling, without regard to categorical constraints -- seems like a recipe for disaster, but as the Web has shown us, you can extract a surprising amount of value from big messy data sets.
    Theme
    Social tagging
  17. Carlin, S.A.: Schlagwortvergabe durch Nutzende (Tagging) als Hilfsmittel zur Suche im Web : Ansatz, Modelle, Realisierungen (2006) 0.03
    0.034356795 = product of:
      0.06871359 = sum of:
        0.06871359 = product of:
          0.13742718 = sum of:
            0.13742718 = weight(_text_:tagging in 2476) [ClassicSimilarity], result of:
              0.13742718 = score(doc=2476,freq=4.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.4612401 = fieldWeight in 2476, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2476)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Theme
    Social tagging
  18. Peters, I.: Folksonomies : indexing and retrieval in Web 2.0 (2009) 0.03
    0.033662647 = product of:
      0.067325294 = sum of:
        0.067325294 = product of:
          0.13465059 = sum of:
            0.13465059 = weight(_text_:tagging in 4203) [ClassicSimilarity], result of:
              0.13465059 = score(doc=4203,freq=6.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.4519212 = fieldWeight in 4203, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4203)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    RSWK
    Social Tagging
    Subject
    Social Tagging
    Theme
    Social tagging
  19. Hayman, S.; Lothian, N.: Taxonomy directed folksonomies : integrating user tagging and controlled vocabularies for Australian education networks (2007) 0.03
    0.027485436 = product of:
      0.05497087 = sum of:
        0.05497087 = product of:
          0.10994174 = sum of:
            0.10994174 = weight(_text_:tagging in 705) [ClassicSimilarity], result of:
              0.10994174 = score(doc=705,freq=4.0), product of:
                0.2979515 = queryWeight, product of:
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.05046712 = queryNorm
                0.3689921 = fieldWeight in 705, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.9038734 = idf(docFreq=327, maxDocs=44218)
                  0.03125 = fieldNorm(doc=705)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    What is the role of controlled vocabulary in a Web 2.0 world? Can we have the best of both worlds: balancing folksonomies and controlled vocabularies to help communities of users find and share information and resources most relevant to them? education.au develops and manages Australian online services for education and training. Its goal is to bring people, learning and technology together. education.au projects are increasingly involved in exploring the use of Web 2.0 developments building on user ideas, knowledge and experience, and how these might be integrated with existing information management systems. This paper presents work being undertaken in this area, particularly in relation to controlled vocabularies, and discusses the challenges faced. Education Network Australia (edna) is a leading online resource collection and collaborative network for education, with an extensive repository of selected educational resources with metadata created by educators and information specialists. It uses controlled vocabularies for metadata creation and searching, where users receive suggested related terms from an education thesaurus, with their results. We recognise that no formal thesaurus can keep pace with user needs so are interested in exploiting the power of folksonomies. We describe a proof of concept project to develop community contributions to managing information and resources, using Taxonomy-Directed Folksonomy. An established taxonomy from the Australian education sector suggests terms for tagging and users can suggest terms. Importantly, the folksonomy will feed back into the taxonomy showing gaps in coverage and helping us to monitor new terms and usage to improve and develop our formal taxonomies. This model would initially sit alongside the current edna repositories, tools and services but will give us valuable user contributed resources as well as information about how users manage resources. Observing terms suggested, chosen and used in folksonomies is a rich source of information for developing our formal systems so that we can indeed get the best of both worlds.
  20. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.02
    0.020512793 = product of:
      0.041025586 = sum of:
        0.041025586 = product of:
          0.08205117 = sum of:
            0.08205117 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.08205117 = score(doc=6048,freq=2.0), product of:
                0.17672725 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05046712 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 9.2007 15:41:14