Literatur zur Informationserschließung
Diese Datenbank enthält über 40.000 Dokumente zu Themen aus den Bereichen Formalerschließung – Inhaltserschließung – Information Retrieval.
© 2015 W. Gödert, TH Köln, Institut für Informationswissenschaft
/
Powered by litecat, BIS Oldenburg
(Stand: 28. April 2022)
Suche
Suchergebnisse
Treffer 1–2 von 2
sortiert nach:
-
1Giachanou, A. ; Rosso, P. ; Crestani, F.: ¬The impact of emotional signals on credibility assessment.
In: Journal of the Association for Information Science and Technology. 72(2021) no.9, S.1117-1132.
Abstract: Fake news is considered one of the main threats of our society. The aim of fake news is usually to confuse readers and trigger intense emotions to them in an attempt to be spread through social networks. Even though recent studies have explored the effectiveness of different linguistic patterns for fake news detection, the role of emotional signals has not yet been explored. In this paper, we focus on extracting emotional signals from claims and evaluating their effectiveness on credibility assessment. First, we explore different methodologies for extracting the emotional signals that can be triggered to the users when they read a claim. Then, we present emoCred, a model that is based on a long-short term memory model that incorporates emotional signals extracted from the text of the claims to differentiate between credible and non-credible ones. In addition, we perform an analysis to understand which emotional signals and which terms are the most useful for the different credibility classes. We conduct extensive experiments and a thorough analysis on real-world datasets. Our results indicate the importance of incorporating emotional signals in the credibility assessment problem.
Inhalt: Vgl.: https://asistdl.onlinelibrary.wiley.com/doi/10.1002/asi.24480.
-
2Varathan, K.D. ; Giachanou, A. ; Crestani, F.: Comparative opinion mining : a review.
In: Journal of the Association for Information Science and Technology. 68(2017) no.4, S.811-829.
(Review)
Abstract: Opinion mining refers to the use of natural language processing, text analysis, and computational linguistics to identify and extract subjective information in textual material. Opinion mining, also known as sentiment analysis, has received a lot of attention in recent times, as it provides a number of tools to analyze public opinion on a number of different topics. Comparative opinion mining is a subfield of opinion mining which deals with identifying and extracting information that is expressed in a comparative form (e.g., "paper X is better than the Y"). Comparative opinion mining plays a very important role when one tries to evaluate something because it provides a reference point for the comparison. This paper provides a review of the area of comparative opinion mining. It is the first review that cover specifically this topic as all previous reviews dealt mostly with general opinion mining. This survey covers comparative opinion mining from two different angles. One from the perspective of techniques and the other from the perspective of comparative opinion elements. It also incorporates preprocessing tools as well as data set that were used by past researchers that can be useful to future researchers in the field of comparative opinion mining.
Inhalt: Vgl.: http://onlinelibrary.wiley.com/doi/10.1002/asi.23716/full.
Themenfeld: Data Mining
Wissenschaftsfach: Kommunikationswissenschaften