Literatur zur Informationserschließung
Diese Datenbank enthält über 40.000 Dokumente zu Themen aus den Bereichen Formalerschließung – Inhaltserschließung – Information Retrieval.
© 2015 W. Gödert, TH Köln, Institut für Informationswissenschaft
/
Powered by litecat, BIS Oldenburg
(Stand: 28. April 2022)
Suche
Suchergebnisse
Treffer 1–1 von 1
sortiert nach:
-
1Saif, H. ; He, Y. ; Fernandez, M. ; Alani, H.: Contextual semantics for sentiment analysis of Twitter.
In: Information processing and management. 52(2016) no.1, S.5-19.
Abstract: Sentiment analysis on Twitter has attracted much attention recently due to its wide applications in both, commercial and public sectors. In this paper we present SentiCircles, a lexicon-based approach for sentiment analysis on Twitter. Different from typical lexicon-based approaches, which offer a fixed and static prior sentiment polarities of words regardless of their context, SentiCircles takes into account the co-occurrence patterns of words in different contexts in tweets to capture their semantics and update their pre-assigned strength and polarity in sentiment lexicons accordingly. Our approach allows for the detection of sentiment at both entity-level and tweet-level. We evaluate our proposed approach on three Twitter datasets using three different sentiment lexicons to derive word prior sentiments. Results show that our approach significantly outperforms the baselines in accuracy and F-measure for entity-level subjectivity (neutral vs. polar) and polarity (positive vs. negative) detections. For tweet-level sentiment detection, our approach performs better than the state-of-the-art SentiStrength by 4-5% in accuracy in two datasets, but falls marginally behind by 1% in F-measure in the third dataset.
Inhalt: Vgl.: doi:10.1016/j.ipm.2015.01.005.
Anmerkung: Beitrag in einem Themenheft "Emotion and sentiment in social and expressive media"
Themenfeld: Inhaltsanalyse
Objekt: Twitter