Search (5 results, page 1 of 1)

  • × author_ss:"Austin, D."
  1. Austin, D.; Sørensen, J.: PRECIS in a multilingual context : Pt.2: A linguistic and logical explanation of the syntax. (1976) 0.02
    0.02200875 = product of:
      0.0440175 = sum of:
        0.0440175 = product of:
          0.088035 = sum of:
            0.088035 = weight(_text_:language in 981) [ClassicSimilarity], result of:
              0.088035 = score(doc=981,freq=8.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.4334667 = fieldWeight in 981, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=981)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this second paper in the series on PRECIS we set out to establish a theoretical model of the indexing operation to account for the growing empirical evidence that PRECIS can be applied successfully to the terms and phrases of more than one natural language (NL). For this purpose, the system is examined from two different but related viewpoints, the first linguistic and the second logical. In linguistic terms, the schema of role operators is related to certain features of NL which are regarded by linguists as language-independent, particular attention being paid to Chomsky's 1965 theory, the notion of deep cases, and the idea that roles, as used in an indexing language (IL) are related to deep cases in NL. It is realised that we should not rely too heavily on analogies between NL and IL, on the grounds that these two kinds of language have different structures and to some extent different functions, Consequently, the structure of a PRECIS string is also considered in terms of an alternative logic, and it is suggested that the order of terms in strings and entries, explained in the earlier paper through reference to the dual properties of context-dependency and one-toone relationships, is also amenable to a different but reinforcing explanation in terms of time-dependency. These two types of explanation, the linguistic and the logical, form the basis for a proposed theoretical model of the 'stages of indexing'. Finally, the authors consider the implications of this model for multilingual indexing.
  2. Austin, D.: PRECIS in a multilingual context : Pt.1: PRECIS: an overview (1976) 0.02
    0.021787554 = product of:
      0.043575108 = sum of:
        0.043575108 = product of:
          0.087150216 = sum of:
            0.087150216 = weight(_text_:language in 983) [ClassicSimilarity], result of:
              0.087150216 = score(doc=983,freq=4.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.42911017 = fieldWeight in 983, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=983)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The present paper is offered as the first of a series of articles in which PRECIS will be reviewed as a potential multi-lingual system, having in mind the obvious need, notably in a European context, for standard and language independent methods of subject analysis and document description. This first paper outlines the origins of PRECIS, and considers its use in English language indexing. A second paper will deal in general terms with the syntactical model which is used for producing PRECIS input strings and index entries. Later papers will then review the application of this model to indexing in, firstly, the Germanic languages (e.g. German and Danish), and, secondly, the Romance languages, illustrated by French.
  3. Austin, D.; Sørensen, J.: PRECIS in a multilingual context : Pt.3: Multilingual experiments, proposed codes, and procedures for the Germanic languages. (1976) 0.02
    0.015406125 = product of:
      0.03081225 = sum of:
        0.03081225 = product of:
          0.0616245 = sum of:
            0.0616245 = weight(_text_:language in 974) [ClassicSimilarity], result of:
              0.0616245 = score(doc=974,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.30342668 = fieldWeight in 974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=974)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    PRECIS was introduced, mainly as an English language system, in the first paper in this series (1), and that account was followed by a generalised logicolinguistic explanation in the second (2). The present paper sets out to consider more practical matters of two kinds. Firstly, it describes some of the experiments in multilingual indexing which have been carried out already, noting in particular the lessons, leading to new procedures, drawn from these experiences. Secondly, the theoretical model proposed in the second paper, together with some of the new codes and procedures found to be necessary as the result of experiment with non-English languages, are related specifically to work in the Germanic languages.
  4. Austin, D.: Prospects for a new general classification (1969) 0.01
    0.011004375 = product of:
      0.02200875 = sum of:
        0.02200875 = product of:
          0.0440175 = sum of:
            0.0440175 = weight(_text_:language in 1519) [ClassicSimilarity], result of:
              0.0440175 = score(doc=1519,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.21673335 = fieldWeight in 1519, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1519)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In traditional classification schemes, the universe of knowledge is brokeii down into self- contained disciplines which are further analysed to the point at which a particular concept is located. This leads to problems of: (a) currency: keeping the scheme in line with new discoveries. (b) hospitality: allowing room for insertion of new subjects (c) cross-classification: a concept may be considered in such a way that it fits as logically into one discipline as another. Machine retrieval is also hampered by the fact that any individual concept is notated differently, depending on where in the scheme it appears. The approach now considered is from an organized universe of concepts, every concept being set down only once in an appropriate vocabulary, where it acquires the notation which identifies it wherever it is used. It has been found that all the concepts present in any compound subject can be handled as though they belong to one of two basic concept types, being either Entities or Attributes. In classing, these concepts are identified, and notation is selected from appropriate schedules. Subjects are then built according to formal rules, the final class number incorporating operators which convey the fundamental relationships between concepts. From this viewpoint, the Rules and Operators of the proposed system can be seen as the grammar of an IR language, and the schedules of Entities and Attributes as its vocabulary.
  5. Austin, D.; Digger, J.A.: PRECIS: The Preserved Context Index System (1985) 0.01
    0.006602625 = product of:
      0.01320525 = sum of:
        0.01320525 = product of:
          0.0264105 = sum of:
            0.0264105 = weight(_text_:language in 3652) [ClassicSimilarity], result of:
              0.0264105 = score(doc=3652,freq=2.0), product of:
                0.2030952 = queryWeight, product of:
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.051766515 = queryNorm
                0.13004 = fieldWeight in 3652, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.9232929 = idf(docFreq=2376, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3652)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The system itself has two major aspects: - a syntactic approach in which relationships between terms are identified and tagged. Suitable algorithms for manipulation produce a very thorough index in which each head word is kept in context. - a semantic approach in which terminology is weIl defined by ensuring that the relationships of equivalence, hierarchy, and association are clearly established. Charts of relationships are created by inductive means (i.e., from the ground up). A special code for computer manipulation is used with each line of the string. This translates the string format into one that, with specially derived algorithms, can be used by the computer, to produce the actual index headings with all parts rotated by following the algorithm. The PRECIS system has been translated and utilized for languages other than English, notably French, German, and Danish. Modifications needed for idiosyncracies of each language have been made. Some, such as those modifications needed for German, have turned out to have usefulness with English as weIl. All in all, the system has such advanced indexing concepts that it provides a kind of indexing not possible before the computer came into common usage. Austin, who joined the staff of the British National Bibliography in 1963, is currently a member of the British Library staff. His early work included a NATO-sponsored research assignment for the Classification Research Group (q.v.). This, in turn, led to the development of PRECIS.