Search (3 results, page 1 of 1)

  • × author_ss:"Bates, M.J."
  • × theme_ss:"Information"
  • × type_ss:"a"
  1. Bates, M.J.: Fundamental forms of information (2006) 0.02
    0.017497903 = product of:
      0.034995805 = sum of:
        0.034995805 = product of:
          0.06999161 = sum of:
            0.06999161 = weight(_text_:22 in 2746) [ClassicSimilarity], result of:
              0.06999161 = score(doc=2746,freq=4.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.38301262 = fieldWeight in 2746, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2746)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2009 18:15:22
  2. Bates, M.J.: Concepts for the study of information embodiment (2018) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 5525) [ClassicSimilarity], result of:
              0.021780973 = score(doc=5525,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 5525, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5525)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The growing study in information science of the role of the body in human information practice may benefit from the concepts developed around a set of fundamental forms of information previously published by the author. In applying these concepts to the study of human information practice, we see a framework that nicely names and locates the major components of an understanding of information seeking of all types, including that related to the body. We see information in nature, what happens to information when it encounters a nervous system, and how that information is used within nervous systems to both encode and embody the experiences of life. We see information not only in direct encounters with the body but also as it is experienced through extensions of the body, used for both input and output purposes. We also see information in the body in relation to a larger framework of forms of information encompassing both internal and external (exosomatic) information. Finally, a selective review is provided of related research and theory from biology, anthropology, psychology, and philosophy, which supports and deepens our understanding of the approach taken here to information embodiment.
  3. Bates, M.J.: Information and knowledge : an evolutionary framework for information science (2005) 0.00
    0.004764588 = product of:
      0.009529176 = sum of:
        0.009529176 = product of:
          0.019058352 = sum of:
            0.019058352 = weight(_text_:systems in 158) [ClassicSimilarity], result of:
              0.019058352 = score(doc=158,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.118839346 = fieldWeight in 158, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=158)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many definitions of information have been suggested throughout the history of information science. In this essay, the objective has been to provide a definition that is usable for the physical, biological and social meanings of the term, covering the various senses important to our field. Information has been defined as the pattern of organization of matter and energy. Information is everywhere except where there is total entropy. Living beings process, organize and ascribe meaning to information. Some pattern of organization that has been given meaning by a living being has been defined as information 2, while the above definition is information 1, when it is desirable to make the distinction. Knowledge has been defined as information given meaning and integrated with other contents of understanding. Meaning itself is rooted ultimately in biological survival. In the human being, extensive processing space in the brain has made possible the generation of extremely rich cultural and interpersonal meaning, which imbues human interactions. (In the short term, not all meaning that humans ascribe to information is the result of evolutionary processes. Our extensive brain processing space also enables us to hold beliefs for the short term that, over the long term, may actually be harmful to survival.) Data 1 has been defined as that portion of the entire information environment (including internal inputs) that is taken in, or processed, by an organism. Data 2 is that information that is selected or generated and used by human beings for research or other social purposes. This definition of information is not reductive--that is, it does not imply that information is all and only the most microscopic physical manifestation of matter and energy. Information principally exists for organisms at many emergent levels. A human being, for example, can see this account as tiny marks on a piece of paper, as letters of the alphabet, as words of the English language, as a sequence of ideas, as a genre of publication, as a philosophical position and so on. Thus, patterns of organization are not all equal in the life experience of animals. Some types of patterns are more important, some less so. Some parts of patterns are repetitive and can be compressed in mental storage. As mental storage space is generally limited and its maintenance costly to an animal, adaptive advantage accrues to the species that develops efficient storage. As a result, many species process elements of their environment in ways efficient and effective for their particular purposes; that is, as patterns of organization that are experienced as emergent wholes. We see a chair as a chair, not only as a pattern of light and dark. We see a string of actions by a salesperson as bait and switch, not just as a sequence of actions. We understand a series of statements as parts of a whole philosophical argument, not just as a series of sentences. The understanding of information embraced here recognizes and builds on the idea that these emergent wholes are efficient for storage and effective for the life purposes of human beings as successful animals (to date) on our planet. Thus, people experience their lives in terms of these emergent objects and relations, for the most part. Likewise, information is stored in retrieval systems in such a way that it can be represented to human beings in their preferred emergent forms, rather than in the pixels or bits in which the information is actually encoded within the information system.