Search (54 results, page 3 of 3)

  • × author_ss:"Bornmann, L."
  • × year_i:[2010 TO 2020}
  1. Bornmann, L.; Mutz, R.: Growth rates of modern science : a bibliometric analysis based on the number of publications and cited references (2015) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 2261) [ClassicSimilarity], result of:
              0.006079746 = score(doc=2261,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 2261, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2261)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many studies (in information science) have looked at the growth of science. In this study, we reexamine the question of the growth of science. To do this we (a) use current data up to publication year 2012 and (b) analyze the data across all disciplines and also separately for the natural sciences and for the medical and health sciences. Furthermore, the data were analyzed with an advanced statistical technique-segmented regression analysis-which can identify specific segments with similar growth rates in the history of science. The study is based on two different sets of bibliometric data: (a) the number of publications held as source items in the Web of Science (WoS, Thomson Reuters) per publication year and (b) the number of cited references in the publications of the source items per cited reference year. We looked at the rate at which science has grown since the mid-1600s. In our analysis of cited references we identified three essential growth phases in the development of science, which each led to growth rates tripling in comparison with the previous phase: from less than 1% up to the middle of the 18th century, to 2 to 3% up to the period between the two world wars, and 8 to 9% to 2010.
    Type
    a
  2. Mutz, R.; Bornmann, L.; Daniel, H.-D.: Testing for the fairness and predictive validity of research funding decisions : a multilevel multiple imputation for missing data approach using ex-ante and ex-post peer evaluation data from the Austrian science fund (2015) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 2270) [ClassicSimilarity], result of:
              0.006079746 = score(doc=2270,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 2270, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2270)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It is essential for research funding organizations to ensure both the validity and fairness of the grant approval procedure. The ex-ante peer evaluation (EXANTE) of N?=?8,496 grant applications submitted to the Austrian Science Fund from 1999 to 2009 was statistically analyzed. For 1,689 funded research projects an ex-post peer evaluation (EXPOST) was also available; for the rest of the grant applications a multilevel missing data imputation approach was used to consider verification bias for the first time in peer-review research. Without imputation, the predictive validity of EXANTE was low (r?=?.26) but underestimated due to verification bias, and with imputation it was r?=?.49. That is, the decision-making procedure is capable of selecting the best research proposals for funding. In the EXANTE there were several potential biases (e.g., gender). With respect to the EXPOST there was only one real bias (discipline-specific and year-specific differential prediction). The novelty of this contribution is, first, the combining of theoretical concepts of validity and fairness with a missing data imputation approach to correct for verification bias and, second, multilevel modeling to test peer review-based funding decisions for both validity and fairness in terms of potential and real biases.
    Type
    a
  3. Bornmann, L.: Nature's top 100 revisited (2015) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 2351) [ClassicSimilarity], result of:
              0.006079746 = score(doc=2351,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 2351, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2351)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  4. Bauer, J.; Leydesdorff, L.; Bornmann, L.: Highly cited papers in Library and Information Science (LIS) : authors, institutions, and network structures (2016) 0.00
    0.0015199365 = product of:
      0.003039873 = sum of:
        0.003039873 = product of:
          0.006079746 = sum of:
            0.006079746 = weight(_text_:a in 3231) [ClassicSimilarity], result of:
              0.006079746 = score(doc=3231,freq=8.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12739488 = fieldWeight in 3231, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3231)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As a follow-up to the highly cited authors list published by Thomson Reuters in June 2014, we analyzed the top 1% most frequently cited papers published between 2002 and 2012 included in the Web of Science (WoS) subject category "Information Science & Library Science." In all, 798 authors contributed to 305 top 1% publications; these authors were employed at 275 institutions. The authors at Harvard University contributed the largest number of papers, when the addresses are whole-number counted. However, Leiden University leads the ranking if fractional counting is used. Twenty-three of the 798 authors were also listed as most highly cited authors by Thomson Reuters in June 2014 (http://highlycited.com/). Twelve of these 23 authors were involved in publishing 4 or more of the 305 papers under study. Analysis of coauthorship relations among the 798 highly cited scientists shows that coauthorships are based on common interests in a specific topic. Three topics were important between 2002 and 2012: (a) collection and exploitation of information in clinical practices; (b) use of the Internet in public communication and commerce; and (c) scientometrics.
    Type
    a
  5. Bornmann, L.; Marx, W.: Distributions instead of single numbers : percentiles and beam plots for the assessment of single researchers (2014) 0.00
    0.0015046606 = product of:
      0.0030093212 = sum of:
        0.0030093212 = product of:
          0.0060186423 = sum of:
            0.0060186423 = weight(_text_:a in 1190) [ClassicSimilarity], result of:
              0.0060186423 = score(doc=1190,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12611452 = fieldWeight in 1190, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1190)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Citations measure an aspect of scientific quality: the impact of publications (A.F.J. van Raan, 1996). Percentiles normalize the impact of papers with respect to their publication year and field without using the arithmetic average. They are suitable for visualizing the performance of a single scientist. Beam plots make it possible to present the distributions of percentiles in the different publication years combined with the medians from these percentiles within each year and across all years.
    Type
    a
  6. Egghe, L.; Bornmann, L.: Fallout and miss in journal peer review (2013) 0.00
    0.0015046606 = product of:
      0.0030093212 = sum of:
        0.0030093212 = product of:
          0.0060186423 = sum of:
            0.0060186423 = weight(_text_:a in 1759) [ClassicSimilarity], result of:
              0.0060186423 = score(doc=1759,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.12611452 = fieldWeight in 1759, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1759)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The authors exploit the analogy between journal peer review and information retrieval in order to quantify some imperfections of journal peer review. Design/methodology/approach - The authors define fallout rate and missing rate in order to describe quantitatively the weak papers that were accepted and the strong papers that were missed, respectively. To assess the quality of manuscripts the authors use bibliometric measures. Findings - Fallout rate and missing rate are put in relation with the hitting rate and success rate. Conclusions are drawn on what fraction of weak papers will be accepted in order to have a certain fraction of strong accepted papers. Originality/value - The paper illustrates that these curves are new in peer review research when interpreted in the information retrieval terminology.
    Type
    a
  7. Marx, W.; Bornmann, L.; Cardona, M.: Reference standards and reference multipliers for the comparison of the citation impact of papers published in different time periods (2010) 0.00
    0.0013163039 = product of:
      0.0026326077 = sum of:
        0.0026326077 = product of:
          0.0052652154 = sum of:
            0.0052652154 = weight(_text_:a in 3998) [ClassicSimilarity], result of:
              0.0052652154 = score(doc=3998,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.11032722 = fieldWeight in 3998, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3998)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this study, reference standards and reference multipliers are suggested as a means to compare the citation impact of earlier research publications in physics (from the period of "Little Science" in the early 20th century) with that of contemporary papers (from the period of "Big Science," beginning around 1960). For the development of time-specific reference standards, the authors determined (a) the mean citation rates of papers in selected physics journals as well as (b) the mean citation rates of all papers in physics published in 1900 (Little Science) and in 2000 (Big Science); this was accomplished by relying on the processes of field-specific standardization in bibliometry. For the sake of developing reference multipliers with which the citation impact of earlier papers can be adjusted to the citation impact of contemporary papers, they combined the reference standards calculated for 1900 and 2000 into their ratio. The use of reference multipliers is demonstrated by means of two examples involving the time adjusted h index values for Max Planck and Albert Einstein.
    Type
    a
  8. Leydesdorff, L.; Bornmann, L.: Integrated impact indicators compared with impact factors : an alternative research design with policy implications (2011) 0.00
    0.0013163039 = product of:
      0.0026326077 = sum of:
        0.0026326077 = product of:
          0.0052652154 = sum of:
            0.0052652154 = weight(_text_:a in 4919) [ClassicSimilarity], result of:
              0.0052652154 = score(doc=4919,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.11032722 = fieldWeight in 4919, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4919)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In bibliometrics, the association of "impact" with central-tendency statistics is mistaken. Impacts add up, and citation curves therefore should be integrated instead of averaged. For example, the journals MIS Quarterly and Journal of the American Society for Information Science and Technology differ by a factor of 2 in terms of their respective impact factors (IF), but the journal with the lower IF has the higher impact. Using percentile ranks (e.g., top-1%, top-10%, etc.), an Integrated Impact Indicator (I3) can be based on integration of the citation curves, but after normalization of the citation curves to the same scale. The results across document sets can be compared as percentages of the total impact of a reference set. Total number of citations, however, should not be used instead because the shape of the citation curves is then not appreciated. I3 can be applied to any document set and any citation window. The results of the integration (summation) are fully decomposable in terms of journals or institutional units such as nations, universities, and so on because percentile ranks are determined at the paper level. In this study, we first compare I3 with IFs for the journals in two Institute for Scientific Information subject categories ("Information Science & Library Science" and "Multidisciplinary Sciences"). The library and information science set is additionally decomposed in terms of nations. Policy implications of this possible paradigm shift in citation impact analysis are specified.
    Type
    a
  9. Bornmann, L.; Moya Anegón, F.de: What proportion of excellent papers makes an institution one of the best worldwide? : Specifying thresholds for the interpretation of the results of the SCImago Institutions Ranking and the Leiden Ranking (2014) 0.00
    0.0013163039 = product of:
      0.0026326077 = sum of:
        0.0026326077 = product of:
          0.0052652154 = sum of:
            0.0052652154 = weight(_text_:a in 1235) [ClassicSimilarity], result of:
              0.0052652154 = score(doc=1235,freq=6.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.11032722 = fieldWeight in 1235, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1235)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    University rankings generally present users with the problem of placing the results given for an institution in context. Only a comparison with the performance of all other institutions makes it possible to say exactly where an institution stands. In order to interpret the results of the SCImago Institutions Ranking (based on Scopus data) and the Leiden Ranking (based on Web of Science data), in this study we offer thresholds with which it is possible to assess whether an institution belongs to the top 1%, top 5%, top 10%, top 25%, or top 50% of institutions in the world. The thresholds are based on the excellence rate or PPtop 10%. Both indicators measure the proportion of an institution's publications which belong to the 10% most frequently cited publications and are the most important indicators for measuring institutional impact. For example, while an institution must achieve a value of 24.63% in the Leiden Ranking 2013 to be considered one of the top 1% of institutions worldwide, the SCImago Institutions Ranking requires 30.2%.
    Type
    a
  10. Bornmann, L.; Mutz, R.; Daniel, H.-D.: Multilevel-statistical reformulation of citation-based university rankings : the Leiden ranking 2011/2012 (2013) 0.00
    0.0010747575 = product of:
      0.002149515 = sum of:
        0.002149515 = product of:
          0.00429903 = sum of:
            0.00429903 = weight(_text_:a in 1007) [ClassicSimilarity], result of:
              0.00429903 = score(doc=1007,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.090081796 = fieldWeight in 1007, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1007)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Since the 1990s, with the heightened competition and the strong growth of the international higher education market, an increasing number of rankings have been created that measure the scientific performance of an institution based on data. The Leiden Ranking 2011/2012 (LR) was published early in 2012. Starting from Goldstein and Spiegelhalter's (1996) recommendations for conducting quantitative comparisons among institutions, in this study we undertook a reformulation of the LR by means of multilevel regression models. First, with our models we replicated the ranking results; second, the reanalysis of the LR data showed that only 5% of the PPtop10% total variation is attributable to differences between universities. Beyond that, about 80% of the variation between universities can be explained by differences among countries. If covariates are included in the model the differences among most of the universities become meaningless. Our findings have implications for conducting university rankings in general and for the LR in particular. For example, with Goldstein-adjusted confidence intervals, it is possible to interpret the significance of differences among universities meaningfully: Rank differences among universities should be interpreted as meaningful only if their confidence intervals do not overlap.
    Type
    a
  11. Bornmann, L.; Haunschild, R.: ¬An empirical look at the nature index (2017) 0.00
    0.0010747575 = product of:
      0.002149515 = sum of:
        0.002149515 = product of:
          0.00429903 = sum of:
            0.00429903 = weight(_text_:a in 3432) [ClassicSimilarity], result of:
              0.00429903 = score(doc=3432,freq=4.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.090081796 = fieldWeight in 3432, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3432)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In November 2014, the Nature Index (NI) was introduced (see http://www.natureindex.com) by the Nature Publishing Group (NPG). The NI comprises the primary research articles published in the past 12 months in a selection of reputable journals. Starting from two short comments on the NI (Haunschild & Bornmann, 2015a, 2015b), we undertake an empirical analysis of the NI using comprehensive country data. We investigate whether the huge efforts of computing the NI are justified and whether the size-dependent NI indicators should be complemented by size-independent variants. The analysis uses data from the Max Planck Digital Library in-house database (which is based on Web of Science data) and from the NPG. In the first step of the analysis, we correlate the NI with other metrics that are simpler to generate than the NI. The resulting large correlation coefficients point out that the NI produces similar results as simpler solutions. In the second step of the analysis, relative and size-independent variants of the NI are generated that should be additionally presented by the NPG. The size-dependent NI indicators favor large countries (or institutions) and the top-performing small countries (or institutions) do not come into the picture.
    Type
    a
  12. Bornmann, L.: Lässt sich die Qualität von Forschung messen? (2013) 0.00
    9.11962E-4 = product of:
      0.001823924 = sum of:
        0.001823924 = product of:
          0.003647848 = sum of:
            0.003647848 = weight(_text_:a in 928) [ClassicSimilarity], result of:
              0.003647848 = score(doc=928,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.07643694 = fieldWeight in 928, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=928)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  13. Leydesdorff, L.; Bornmann, L.: ¬The operationalization of "fields" as WoS subject categories (WCs) in evaluative bibliometrics : the cases of "library and information science" and "science & technology studies" (2016) 0.00
    9.11962E-4 = product of:
      0.001823924 = sum of:
        0.001823924 = product of:
          0.003647848 = sum of:
            0.003647848 = weight(_text_:a in 2779) [ClassicSimilarity], result of:
              0.003647848 = score(doc=2779,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.07643694 = fieldWeight in 2779, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2779)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  14. Bornmann, L.: Is collaboration among scientists related to the citation impact of papers because their quality increases with collaboration? : an analysis based on data from F1000Prime and normalized citation scores (2017) 0.00
    7.5996824E-4 = product of:
      0.0015199365 = sum of:
        0.0015199365 = product of:
          0.003039873 = sum of:
            0.003039873 = weight(_text_:a in 3539) [ClassicSimilarity], result of:
              0.003039873 = score(doc=3539,freq=2.0), product of:
                0.04772363 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.041389145 = queryNorm
                0.06369744 = fieldWeight in 3539, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3539)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a