Search (2 results, page 1 of 1)

  • × author_ss:"Rindflesch, T.C."
  • × theme_ss:"Computerlinguistik"
  • × year_i:[2000 TO 2010}
  1. Rindflesch, T.C.; Fizsman, M.: The interaction of domain knowledge and linguistic structure in natural language processing : interpreting hypernymic propositions in biomedical text (2003) 0.00
    0.0026742492 = product of:
      0.0053484985 = sum of:
        0.0053484985 = product of:
          0.010696997 = sum of:
            0.010696997 = weight(_text_:a in 2097) [ClassicSimilarity], result of:
              0.010696997 = score(doc=2097,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20142901 = fieldWeight in 2097, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2097)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Interpretation of semantic propositions in free-text documents such as MEDLINE citations would provide valuable support for biomedical applications, and several approaches to semantic interpretation are being pursued in the biomedical informatics community. In this paper, we describe a methodology for interpreting linguistic structures that encode hypernymic propositions, in which a more specific concept is in a taxonomic relationship with a more general concept. In order to effectively process these constructions, we exploit underspecified syntactic analysis and structured domain knowledge from the Unified Medical Language System (UMLS). After introducing the syntactic processing on which our system depends, we focus on the UMLS knowledge that supports interpretation of hypernymic propositions. We first use semantic groups from the Semantic Network to ensure that the two concepts involved are compatible; hierarchical information in the Metathesaurus then determines which concept is more general and which more specific. A preliminary evaluation of a sample based on the semantic group Chemicals and Drugs provides 83% precision. An error analysis was conducted and potential solutions to the problems encountered are presented. The research discussed here serves as a paradigm for investigating the interaction between domain knowledge and linguistic structure in natural language processing, and could also make a contribution to research on automatic processing of discourse structure. Additional implications of the system we present include its integration in advanced semantic interpretation processors for biomedical text and its use for information extraction in specific domains. The approach has the potential to support a range of applications, including information retrieval and ontology engineering.
    Type
    a
  2. Humphrey, S.M.; Rogers, W.J.; Kilicoglu, H.; Demner-Fushman, D.; Rindflesch, T.C.: Word sense disambiguation by selecting the best semantic type based on journal descriptor indexing : preliminary experiment (2006) 0.00
    0.0016571716 = product of:
      0.0033143433 = sum of:
        0.0033143433 = product of:
          0.0066286866 = sum of:
            0.0066286866 = weight(_text_:a in 4912) [ClassicSimilarity], result of:
              0.0066286866 = score(doc=4912,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12482099 = fieldWeight in 4912, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4912)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An experiment was performed at the National Library of Medicine® (NLM®) in word sense disambiguation (WSD) using the Journal Descriptor Indexing (JDI) methodology. The motivation is the need to solve the ambiguity problem confronting NLM's MetaMap system, which maps free text to terms corresponding to concepts in NLM's Unified Medical Language System® (UMLS®) Metathesaurus®. If the text maps to more than one Metathesaurus concept at the same high confidence score, MetaMap has no way of knowing which concept is the correct mapping. We describe the JDI methodology, which is ultimately based an statistical associations between words in a training set of MEDLINE® citations and a small set of journal descriptors (assigned by humans to journals per se) assumed to be inherited by the citations. JDI is the basis for selecting the best meaning that is correlated to UMLS semantic types (STs) assigned to ambiguous concepts in the Metathesaurus. For example, the ambiguity transport has two meanings: "Biological Transport" assigned the ST Cell Function and "Patient transport" assigned the ST Health Care Activity. A JDI-based methodology can analyze text containing transport and determine which ST receives a higher score for that text, which then returns the associated meaning, presumed to apply to the ambiguity itself. We then present an experiment in which a baseline disambiguation method was compared to four versions of JDI in disambiguating 45 ambiguous strings from NLM's WSD Test Collection. Overall average precision for the highest-scoring JDI version was 0.7873 compared to 0.2492 for the baseline method, and average precision for individual ambiguities was greater than 0.90 for 23 of them (51%), greater than 0.85 for 24 (53%), and greater than 0.65 for 35 (79%). On the basis of these results, we hope to improve performance of JDI and test its use in applications.
    Type
    a