Search (6 results, page 1 of 1)

  • × author_ss:"Shah, C."
  1. Wang, Y.; Shah, C.: Investigating failures in information seeking episodes (2017) 0.03
    0.029460195 = product of:
      0.05892039 = sum of:
        0.05892039 = sum of:
          0.023506312 = weight(_text_:research in 2922) [ClassicSimilarity], result of:
            0.023506312 = score(doc=2922,freq=2.0), product of:
              0.1491455 = queryWeight, product of:
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.05227703 = queryNorm
              0.15760657 = fieldWeight in 2922, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2922)
          0.03541408 = weight(_text_:22 in 2922) [ClassicSimilarity], result of:
            0.03541408 = score(doc=2922,freq=2.0), product of:
              0.18306525 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05227703 = queryNorm
              0.19345059 = fieldWeight in 2922, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2922)
      0.5 = coord(1/2)
    
    Abstract
    Purpose People face barriers and failures in various kinds of information seeking experiences. These are often attributed to either the information seeker or the system/service they use. The purpose of this paper is to investigate how and why individuals fail to fulfill their information needs in all contexts and situations. It addresses the limitations of existing studies in examining the context of the task and information seeker's strategy and seeks to gain a holistic understanding of information seeking barriers and failures. Design/methodology/approach The primary method used for this investigation is a qualitative survey, in which 63 participants provided 208 real life examples of failures in information seeking. After analyzing the survey data, ten semi-structured interviews with another group of participants were conducted to further examine the survey findings. Data were analyzed using various theoretical frameworks of tasks, strategies, and barriers. Findings A careful examination of aspects of tasks, barriers, and strategies identified from the examples revealed that a wide range of external and internal factors caused people's failures. These factors were also caused or affected by multiple aspects of information seekers' tasks and strategies. People's information needs were often too contextual and specific to be fulfilled by the information retrieved. Other barriers, such as time constraint and institutional restrictions, also intensified the problem. Originality/value This paper highlights the importance of considering the information seeking episodes in which individuals fail to fulfill their needs in a holistic approach by analyzing their tasks, information needs, strategies, and obstacles. The modified theoretical frameworks and the coding methods used could also be instrumental for future research.
    Date
    20. 1.2015 18:30:22
  2. Shah, C.: Collaborative information seeking (2014) 0.01
    0.0101785315 = product of:
      0.020357063 = sum of:
        0.020357063 = product of:
          0.040714126 = sum of:
            0.040714126 = weight(_text_:research in 1193) [ClassicSimilarity], result of:
              0.040714126 = score(doc=1193,freq=6.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.2729826 = fieldWeight in 1193, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1193)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The notions that information seeking is not always a solitary activity and that people working in collaboration for information intensive tasks should be studied and supported have become more prevalent in recent years. Several new research questions, methodologies, and systems have emerged around these notions that may prove to be useful beyond the field of collaborative information seeking (CIS), with relevance to the broader area of information seeking and behavior. This article provides an overview of such key research work from a variety of domains, including library and information science, computer-supported cooperative work, human-computer interaction, and information retrieval. It starts with explanations of collaboration and how CIS fits in different contexts, emphasizing the interactive, intentional, and mutually beneficial nature of CIS activities. Relations to similar and related fields such as collaborative information retrieval, collaborative information behavior, and collaborative filtering are also clarified. Next, the article presents a synthesis of various frameworks and models that exist in the field today, along with a new synthesis of 12 different dimensions of group activities. A discussion on issues and approaches relating to evaluating various parameters in CIS follows. Finally, a list of known issues and challenges is presented to provide an overview of research opportunities in this field.
  3. Shah, C.; Anderson, T.; Hagen, L.; Zhang, Y.: ¬An iSchool approach to data science : human-centered, socially responsible, and context-driven (2021) 0.01
    0.008310735 = product of:
      0.01662147 = sum of:
        0.01662147 = product of:
          0.03324294 = sum of:
            0.03324294 = weight(_text_:research in 244) [ClassicSimilarity], result of:
              0.03324294 = score(doc=244,freq=4.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.22288933 = fieldWeight in 244, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=244)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Information Schools, also referred to as iSchools, have a unique approach to data science with three distinct components: human-centeredness, socially responsible, and rooted in context. In this position paper, we highlight and expand on these components and show how they are integrated in various research and educational activities related to data science that are being carried out at iSchools. We argue that the iSchool way of doing data science is not only highly relevant to the current times, but also crucial in solving problems of tomorrow. Specifically, we accentuate the issues of developing insights and solutions that are not only data-driven, but also incorporate human values, including transparency, privacy, ethics, fairness, and equity. This approach to data science has meaningful implications on how we educate the students and train the next generation of scholars and policymakers. Here, we provide some of those design decisions, rooted in evidence-based research, along with our perspective on how data science is currently situated and how it should be advanced in iSchools.
  4. Wang, Y.; Shah, C.: Authentic versus synthetic : an investigation of the influences of study settings and task configurations on search behaviors (2022) 0.01
    0.008310735 = product of:
      0.01662147 = sum of:
        0.01662147 = product of:
          0.03324294 = sum of:
            0.03324294 = weight(_text_:research in 495) [ClassicSimilarity], result of:
              0.03324294 = score(doc=495,freq=4.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.22288933 = fieldWeight in 495, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=495)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In information seeking and retrieval research, researchers often collect data about users' behaviors to predict task characteristics and personalize information for users. The reliability of user behavior may be directly influenced by data collection methods. This article reports on a mixed-methods study examining the impact of study setting (laboratory setting vs. remote setting) and task authenticity (authentic task vs. simulated task) on users' online browsing and searching behaviors. Thirty-six undergraduate participants finished one lab session and one remote session in which they completed one authentic and one simulated task. Using log data collected from 144 task sessions, this study demonstrates that the synthetic lab study setting and simulated tasks had significant influences mostly on behaviors related to content pages (e.g., page dwell time, number of pages visited per task). Meanwhile, first-query behaviors were less affected by study settings or task authenticity than whole-session behaviors, indicating the reliability of using first-query behaviors in task prediction. Qualitative interviews reveal why users were influenced. This study addresses methodological limitations in existing research and provides new insights and implications for researchers who collect online user search behavioral data.
  5. Shah, C.: Collaborative information seeking : the art and science of making the whole greater than the sum of all (2012) 0.01
    0.008142825 = product of:
      0.01628565 = sum of:
        0.01628565 = product of:
          0.0325713 = sum of:
            0.0325713 = weight(_text_:research in 360) [ClassicSimilarity], result of:
              0.0325713 = score(doc=360,freq=6.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.21838607 = fieldWeight in 360, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.03125 = fieldNorm(doc=360)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Today's complex, information-intensive problems often require people to work together. Mostly these tasks go far beyond simply searching together; they include information lookup, sharing, synthesis, and decision-making. In addition, they all have an end-goal that is mutually beneficial to all parties involved. Such "collaborative information seeking" (CIS) projects typically last several sessions and the participants all share an intention to contribute and benefit. Not surprisingly, these processes are highly interactive. Shah focuses on two individually well-understood notions: collaboration and information seeking, with the goal of bringing them together to show how it is a natural tendency for humans to work together on complex tasks. The first part of his book introduces the general notions of collaboration and information seeking, as well as related concepts, terminology, and frameworks; and thus provides the reader with a comprehensive treatment of the concepts underlying CIS. The second part of the book details CIS as a standalone domain. A series of frameworks, theories, and models are introduced to provide a conceptual basis for CIS. The final part describes several systems and applications of CIS, along with their broader implications on other fields such as computer-supported cooperative work (CSCW) and human-computer interaction (HCI). With this first comprehensive overview of an exciting new research field, Shah delivers to graduate students and researchers in academia and industry an encompassing description of the technologies involved, state-of-the-art results, and open challenges as well as research opportunities.
    Content
    Inhalt: Part I Introduction.- Introduction.- Collaboration.- Collaborative Information Seeking (CIS) in Context.- Part II Conceptual Understanding of CIS.- Frameworks for CIS Research and Development.- Toward a Model for CIS.- Part III CIS Systems, Applications, and Implications.- Systems and Tools for CIS.- Evaluation.- Conclusion.- Ten Stories of Five Cs.- Brief Overview of Computer-Supported Cooperative Work (CSCW).- Brief Overview of Computer-Supported Collaborative Learning (CSCL).- Brief Overview of Computer-Mediated Communication (CMC).
  6. Zhang, Y.; Wu, D.; Hagen, L.; Song, I.-Y.; Mostafa, J.; Oh, S.; Anderson, T.; Shah, C.; Bishop, B.W.; Hopfgartner, F.; Eckert, K.; Federer, L.; Saltz, J.S.: Data science curriculum in the iField (2023) 0.01
    0.005876578 = product of:
      0.011753156 = sum of:
        0.011753156 = product of:
          0.023506312 = sum of:
            0.023506312 = weight(_text_:research in 964) [ClassicSimilarity], result of:
              0.023506312 = score(doc=964,freq=2.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.15760657 = fieldWeight in 964, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=964)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Many disciplines, including the broad Field of Information (iField), offer Data Science (DS) programs. There have been significant efforts exploring an individual discipline's identity and unique contributions to the broader DS education landscape. To advance DS education in the iField, the iSchool Data Science Curriculum Committee (iDSCC) was formed and charged with building and recommending a DS education framework for iSchools. This paper reports on the research process and findings of a series of studies to address important questions: What is the iField identity in the multidisciplinary DS education landscape? What is the status of DS education in iField schools? What knowledge and skills should be included in the core curriculum for iField DS education? What are the jobs available for DS graduates from the iField? What are the differences between graduate-level and undergraduate-level DS education? Answers to these questions will not only distinguish an iField approach to DS education but also define critical components of DS curriculum. The results will inform individual DS programs in the iField to develop curriculum to support undergraduate and graduate DS education in their local context.