Search (70 results, page 2 of 4)

  • × author_ss:"Spink, A."
  • × language_ss:"e"
  • × type_ss:"a"
  1. Spink, A.; Goodrum, A.; Robins, D.: Elicitation behavior during mediated information retrieval (1998) 0.01
    0.009018487 = product of:
      0.06312941 = sum of:
        0.021188283 = weight(_text_:information in 3265) [ClassicSimilarity], result of:
          0.021188283 = score(doc=3265,freq=18.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.40730494 = fieldWeight in 3265, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3265)
        0.04194113 = weight(_text_:retrieval in 3265) [ClassicSimilarity], result of:
          0.04194113 = score(doc=3265,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.46789268 = fieldWeight in 3265, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3265)
      0.14285715 = coord(2/14)
    
    Abstract
    Considers what elicitation or requests for information search intermediaries make of users with information requests during an information retrieval interaction - including prior to and during an information retrieval interaction - and for what purpose. Reports a study of elicitations during 40 mediated information retrieval interactions. Identifies a total of 1.557 search intermediary elicitations within 15 purpose categories. The elicitation purposes of search intermediaries included requests for information on search terms and strategies, database selection, search procedures, system's outputs and relevance of retrieved items, and users' knowledge and previous information seeking. Investigates the transition sequences from 1 type of search intermediary elicitation to another. Compares these findings with results from a study of end user questions
    Source
    Information processing and management. 34(1998) nos.2/3, S.257-273
  2. Tjondronegoro, D.; Spink, A.; Jansen, B.J.: ¬A study and comparison of multimedia Web searching : 1997-2006 (2009) 0.01
    0.008895609 = product of:
      0.06226926 = sum of:
        0.055134792 = weight(_text_:web in 3090) [ClassicSimilarity], result of:
          0.055134792 = score(doc=3090,freq=20.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.5701118 = fieldWeight in 3090, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3090)
        0.0071344664 = weight(_text_:information in 3090) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3090,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3090, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3090)
      0.14285715 = coord(2/14)
    
    Abstract
    Searching for multimedia is an important activity for users of Web search engines. Studying user's interactions with Web search engine multimedia buttons, including image, audio, and video, is important for the development of multimedia Web search systems. This article provides results from a Weblog analysis study of multimedia Web searching by Dogpile users in 2006. The study analyzes the (a) duration, size, and structure of Web search queries and sessions; (b) user demographics; (c) most popular multimedia Web searching terms; and (d) use of advanced Web search techniques including Boolean and natural language. The current study findings are compared with results from previous multimedia Web searching studies. The key findings are: (a) Since 1997, image search consistently is the dominant media type searched followed by audio and video; (b) multimedia search duration is still short (>50% of searching episodes are <1 min), using few search terms; (c) many multimedia searches are for information about people, especially in audio search; and (d) multimedia search has begun to shift from entertainment to other categories such as medical, sports, and technology (based on the most repeated terms). Implications for design of Web multimedia search engines are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.9, S.1756-1768
  3. Spink, A.; Du, J.T.: Toward a Web search model : integrating multitasking, cognitive coordination, and cognitive shifts (2011) 0.01
    0.008810189 = product of:
      0.061671317 = sum of:
        0.04931406 = weight(_text_:web in 4624) [ClassicSimilarity], result of:
          0.04931406 = score(doc=4624,freq=16.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.5099235 = fieldWeight in 4624, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4624)
        0.012357258 = weight(_text_:information in 4624) [ClassicSimilarity], result of:
          0.012357258 = score(doc=4624,freq=12.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23754507 = fieldWeight in 4624, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4624)
      0.14285715 = coord(2/14)
    
    Abstract
    Limited research has investigated the role of multitasking, cognitive coordination, and cognitive shifts during web search. Understanding these three behaviors is crucial to web search model development. This study aims to explore characteristics of multitasking behavior, types of cognitive shifts, and levels of cognitive coordination as well as the relationship between them during web search. Data collection included pre- and postquestionnaires, think-aloud protocols, web search logs, observations, and interviews with 42 graduate students who conducted 315 web search sessions with 221 information problems. Results show that web search is a dynamic interaction including the ordering of multiple information problems and the generation of evolving information problems, including task switching, multitasking, explicit task and implicit mental coordination, and cognitive shifting. Findings show that explicit task-level coordination is closely linked to multitasking, and implicit cognitive-level coordination is related to the task-coordination process; including information problem development and task switching. Coordination mechanisms directly result in cognitive state shifts including strategy, evaluation, and view states that affect users' holistic shifts in information problem understanding and knowledge contribution. A web search model integrating multitasking, cognitive coordination, and cognitive shifts (MCC model) is presented. Implications and further research also are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.8, S.1446-1472
  4. Spink, A.; Wilson, T.; Ellis, D.; Ford, N.: Modeling users' successive searches in digital environments : a National Science Foundation/British Library funded study (1998) 0.01
    0.008521202 = product of:
      0.039765608 = sum of:
        0.012204607 = weight(_text_:web in 1255) [ClassicSimilarity], result of:
          0.012204607 = score(doc=1255,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.12619963 = fieldWeight in 1255, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1255)
        0.012732573 = weight(_text_:information in 1255) [ClassicSimilarity], result of:
          0.012732573 = score(doc=1255,freq=26.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2447598 = fieldWeight in 1255, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1255)
        0.014828428 = weight(_text_:retrieval in 1255) [ClassicSimilarity], result of:
          0.014828428 = score(doc=1255,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.16542503 = fieldWeight in 1255, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1255)
      0.21428572 = coord(3/14)
    
    Abstract
    As digital libraries become a major source of information for many people, we need to know more about how people seek and retrieve information in digital environments. Quite commonly, users with a problem-at-hand and associated question-in-mind repeatedly search a literature for answers, and seek information in stages over extended periods from a variety of digital information resources. The process of repeatedly searching over time in relation to a specific, but possibly an evolving information problem (including changes or shifts in a variety of variables), is called the successive search phenomenon. The study outlined in this paper is currently investigating this new and little explored line of inquiry for information retrieval, Web searching, and digital libraries. The purpose of the research project is to investigate the nature, manifestations, and behavior of successive searching by users in digital environments, and to derive criteria for use in the design of information retrieval interfaces and systems supporting successive searching behavior. This study includes two related projects. The first project is based in the School of Library and Information Sciences at the University of North Texas and is funded by a National Science Foundation POWRE Grant <http://www.nsf.gov/cgi-bin/show?award=9753277>. The second project is based at the Department of Information Studies at the University of Sheffield (UK) and is funded by a grant from the British Library <http://www.shef. ac.uk/~is/research/imrg/uncerty.html> Research and Innovation Center. The broad objectives of each project are to examine the nature and extent of successive search episodes in digital environments by real users over time. The specific aim of the current project is twofold: * To characterize progressive changes and shifts that occur in: user situational context; user information problem; uncertainty reduction; user cognitive styles; cognitive and affective states of the user, and consequently in their queries; and * To characterize related changes over time in the type and use of information resources and search strategies particularly related to given capabilities of IR systems, and IR search engines, and examine changes in users' relevance judgments and criteria, and characterize their differences. The study is an observational, longitudinal data collection in the U.S. and U.K. Three questionnaires are used to collect data: reference, client post search and searcher post search questionnaires. Each successive search episode with a search intermediary for textual materials on the DIALOG Information Service is audiotaped and search transaction logs are recorded. Quantitative analysis includes statistical analysis using Likert scale data from the questionnaires and log-linear analysis of sequential data. Qualitative methods include: content analysis, structuring taxonomies; and diagrams to describe shifts and transitions within and between each search episode. Outcomes of the study are the development of appropriate model(s) for IR interactions in successive search episodes and the derivation of a set of design criteria for interfaces and systems supporting successive searching.
    Theme
    Information Gateway
  5. Jansen, B.J.; Spink, A.; Koshman, S.: Web searcher interaction with the Dogpile.com metasearch engine (2007) 0.01
    0.008064075 = product of:
      0.056448527 = sum of:
        0.04931406 = weight(_text_:web in 270) [ClassicSimilarity], result of:
          0.04931406 = score(doc=270,freq=16.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.5099235 = fieldWeight in 270, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=270)
        0.0071344664 = weight(_text_:information in 270) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=270,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 270, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=270)
      0.14285715 = coord(2/14)
    
    Abstract
    Metasearch engines are an intuitive method for improving the performance of Web search by increasing coverage, returning large numbers of results with a focus on relevance, and presenting alternative views of information needs. However, the use of metasearch engines in an operational environment is not well understood. In this study, we investigate the usage of Dogpile.com, a major Web metasearch engine, with the aim of discovering how Web searchers interact with metasearch engines. We report results examining 2,465,145 interactions from 534,507 users of Dogpile.com on May 6, 2005 and compare these results with findings from other Web searching studies. We collect data on geographical location of searchers, use of system feedback, content selection, sessions, queries, and term usage. Findings show that Dogpile.com searchers are mainly from the USA (84% of searchers), use about 3 terms per query (mean = 2.85), implement system feedback moderately (8.4% of users), and generally (56% of users) spend less than one minute interacting with the Web search engine. Overall, metasearchers seem to have higher degrees of interaction than searchers on non-metasearch engines, but their sessions are for a shorter period of time. These aspects of metasearching may be what define the differences from other forms of Web searching. We discuss the implications of our findings in relation to metasearch for Web searchers, search engines, and content providers.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.5, S.744-755
  6. Kuhlthau, C.; Spink, A.; Cool, C.: Exploration into stages in the retrieval in the information search process in online information retrieval : communication between users and intermediaries (1992) 0.01
    0.007892762 = product of:
      0.055249333 = sum of:
        0.021355784 = weight(_text_:information in 4518) [ClassicSimilarity], result of:
          0.021355784 = score(doc=4518,freq=14.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.41052482 = fieldWeight in 4518, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4518)
        0.033893548 = weight(_text_:retrieval in 4518) [ClassicSimilarity], result of:
          0.033893548 = score(doc=4518,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.37811437 = fieldWeight in 4518, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=4518)
      0.14285715 = coord(2/14)
    
    Abstract
    Describes a model of information seeking behaviour that views the information search process as proceeding through a series of cognitive states through which users progressively refine and reformulate their information problem. The model suggests that searches have several stages which evolve from vague and uncertain to clearer and directed and finally to focused and confident
    Imprint
    Medford, NJ : Learned Information Inc.
    Source
    Proceedings of the 55th Annual Meeting of the American Society for Information Science, Pittsburgh, 26.-29.10.92. Ed.: D. Shaw
  7. Wolfram, D.; Spink, A.; Jansen, B.J.; Saracevic, T.: Vox populi : the public searching of the Web (2001) 0.01
    0.0077074226 = product of:
      0.053951956 = sum of:
        0.041844364 = weight(_text_:web in 6949) [ClassicSimilarity], result of:
          0.041844364 = score(doc=6949,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43268442 = fieldWeight in 6949, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=6949)
        0.012107591 = weight(_text_:information in 6949) [ClassicSimilarity], result of:
          0.012107591 = score(doc=6949,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23274569 = fieldWeight in 6949, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=6949)
      0.14285715 = coord(2/14)
    
    Source
    Journal of the American Society for Information Science and technology. 52(2001) no.12, S.1073-1074
  8. Jansen, B.J.; Spink, A.; Saracevic, T.: Real life, real users and real needs : a study and analysis of users queries on the Web (2000) 0.01
    0.0077074226 = product of:
      0.053951956 = sum of:
        0.041844364 = weight(_text_:web in 411) [ClassicSimilarity], result of:
          0.041844364 = score(doc=411,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43268442 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=411)
        0.012107591 = weight(_text_:information in 411) [ClassicSimilarity], result of:
          0.012107591 = score(doc=411,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23274569 = fieldWeight in 411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.09375 = fieldNorm(doc=411)
      0.14285715 = coord(2/14)
    
    Source
    Information processing and management. 36(2000) no.2, S.207-227
  9. Spink, A.: Term relevance feedback and mediated database searching : implications for information retrieval practice and systems design (1995) 0.01
    0.0076756445 = product of:
      0.053729508 = sum of:
        0.013536699 = weight(_text_:information in 1756) [ClassicSimilarity], result of:
          0.013536699 = score(doc=1756,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 1756, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1756)
        0.04019281 = weight(_text_:retrieval in 1756) [ClassicSimilarity], result of:
          0.04019281 = score(doc=1756,freq=10.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.44838852 = fieldWeight in 1756, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1756)
      0.14285715 = coord(2/14)
    
    Abstract
    Research into both the algorithmic and human approaches to information retrieval is required to improve information retrieval system design and database searching effectiveness. Uses the human approach to examine the sources and effectiveness of search terms selected during mediated interactive information retrieval. Focuses on determining the retrieval effectiveness of search terms identified by users and intermediaries from retrieved items during term relevance feedback. Results show that termns selected from particular database fields of retrieved items during term relevance feedback (TRF) were more effective than search terms from the intermediarity, database thesauri or users' domain knowledge during the interaction, but not as effective as terms from the users' written question statements. Implications for the design and testing of automatic relevance feedback techniques that place greater emphasis on these sources and the practice of database searching are also discussed
    Source
    Information processing and management. 31(1995) no.2, S.161-171
  10. Spink, A.; Ozmultu, H.C.: Characteristics of question format web queries : an exploratory study (2002) 0.01
    0.007609078 = product of:
      0.053263545 = sum of:
        0.046129078 = weight(_text_:web in 3910) [ClassicSimilarity], result of:
          0.046129078 = score(doc=3910,freq=14.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.47698978 = fieldWeight in 3910, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3910)
        0.0071344664 = weight(_text_:information in 3910) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=3910,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 3910, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3910)
      0.14285715 = coord(2/14)
    
    Abstract
    Web queries in question format are becoming a common element of a user's interaction with Web search engines. Web search services such as Ask Jeeves - a publicly accessible question and answer (Q&A) search engine - request users to enter question format queries. This paper provides results from a study examining queries in question format submitted to two different Web search engines - Ask Jeeves that explicitly encourages queries in question format and the Excite search service that does not explicitly encourage queries in question format. We identify the characteristics of queries in question format in two different data sets: (1) 30,000 Ask Jeeves queries and 15,575 Excite queries, including the nature, length, and structure of queries in question format. Findings include: (1) 50% of Ask Jeeves queries and less than 1% of Excite were in question format, (2) most users entered only one query in question format with little query reformulation, (3) limited range of formats for queries in question format - mainly "where", "what", or "how" questions, (4) most common question query format was "Where can I find ..." for general information on a topic, and (5) non-question queries may be in request format. Overall, four types of user Web queries were identified: keyword, Boolean, question, and request. These findings provide an initial mapping of the structure and content of queries in question and request format. Implications for Web search services are discussed.
    Source
    Information processing and management. 38(2002) no.4, S.453-471
  11. Koshman, S.; Spink, A.; Jansen, B.J.: Web searching on the Vivisimo search engine (2006) 0.01
    0.007609078 = product of:
      0.053263545 = sum of:
        0.046129078 = weight(_text_:web in 216) [ClassicSimilarity], result of:
          0.046129078 = score(doc=216,freq=14.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.47698978 = fieldWeight in 216, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=216)
        0.0071344664 = weight(_text_:information in 216) [ClassicSimilarity], result of:
          0.0071344664 = score(doc=216,freq=4.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.13714671 = fieldWeight in 216, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=216)
      0.14285715 = coord(2/14)
    
    Abstract
    The application of clustering to Web search engine technology is a novel approach that offers structure to the information deluge often faced by Web searchers. Clustering methods have been well studied in research labs; however, real user searching with clustering systems in operational Web environments is not well understood. This article reports on results from a transaction log analysis of Vivisimo.com, which is a Web meta-search engine that dynamically clusters users' search results. A transaction log analysis was conducted on 2-week's worth of data collected from March 28 to April 4 and April 25 to May 2, 2004, representing 100% of site traffic during these periods and 2,029,734 queries overall. The results show that the highest percentage of queries contained two terms. The highest percentage of search sessions contained one query and was less than 1 minute in duration. Almost half of user interactions with clusters consisted of displaying a cluster's result set, and a small percentage of interactions showed cluster tree expansion. Findings show that 11.1% of search sessions were multitasking searches, and there are a broad variety of search topics in multitasking search sessions. Other searching interactions and statistics on repeat users of the search engine are reported. These results provide insights into search characteristics with a cluster-based Web search engine and extend research into Web searching trends.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.14, S.1875-1887
  12. Jansen, B.J.; Booth, D.L.; Spink, A.: Determining the informational, navigational, and transactional intent of Web queries (2008) 0.01
    0.0075481744 = product of:
      0.05283722 = sum of:
        0.046783425 = weight(_text_:web in 2091) [ClassicSimilarity], result of:
          0.046783425 = score(doc=2091,freq=10.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.48375595 = fieldWeight in 2091, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2091)
        0.0060537956 = weight(_text_:information in 2091) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2091,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2091, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2091)
      0.14285715 = coord(2/14)
    
    Abstract
    In this paper, we define and present a comprehensive classification of user intent for Web searching. The classification consists of three hierarchical levels of informational, navigational, and transactional intent. After deriving attributes of each, we then developed a software application that automatically classified queries using a Web search engine log of over a million and a half queries submitted by several hundred thousand users. Our findings show that more than 80% of Web queries are informational in nature, with about 10% each being navigational and transactional. In order to validate the accuracy of our algorithm, we manually coded 400 queries and compared the results from this manual classification to the results determined by the automated method. This comparison showed that the automatic classification has an accuracy of 74%. Of the remaining 25% of the queries, the user intent is vague or multi-faceted, pointing to the need for probabilistic classification. We discuss how search engines can use knowledge of user intent to provide more targeted and relevant results in Web searching.
    Source
    Information processing and management. 44(2008) no.3, S.1251-1266
  13. Cool, C.; Spink, A.: Issues of context in information retrieval (IR) : an introduction to the special issue (2002) 0.01
    0.007069463 = product of:
      0.04948624 = sum of:
        0.013536699 = weight(_text_:information in 2587) [ClassicSimilarity], result of:
          0.013536699 = score(doc=2587,freq=10.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2602176 = fieldWeight in 2587, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2587)
        0.03594954 = weight(_text_:retrieval in 2587) [ClassicSimilarity], result of:
          0.03594954 = score(doc=2587,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.40105087 = fieldWeight in 2587, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2587)
      0.14285715 = coord(2/14)
    
    Abstract
    The subject of context has received a great deal of attention in the information retrieval (IR) literature over the past decade, primarily in studies of information seeking and IR interactions. Recently, attention to context in IR has expanded to address new problems in new environments. In this paper we outline five overlapping dimensions of context which we believe to be important constituent elements and we discuss how they are related to different issues in IR research. The papers in this special issue are summarized with respect to how they represent work that is being conducted within these dimensions of context. We conclude with future areas of research which are needed in order to fully understand the multidimensional nature of context in IR.
    Footnote
    Einführung in ein Themenheft: "Issues of context in information retrieval (IR)"
    Source
    Information processing and management. 38(2002) no.5, S.605-611
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  14. Spink, A.: Multitasking information behavior and information task switching : an exploratory study (2004) 0.01
    0.0069520227 = product of:
      0.048664156 = sum of:
        0.020922182 = weight(_text_:web in 4426) [ClassicSimilarity], result of:
          0.020922182 = score(doc=4426,freq=2.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.21634221 = fieldWeight in 4426, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4426)
        0.027741974 = weight(_text_:information in 4426) [ClassicSimilarity], result of:
          0.027741974 = score(doc=4426,freq=42.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.53328735 = fieldWeight in 4426, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4426)
      0.14285715 = coord(2/14)
    
    Abstract
    Recent studies show that humans engage in multitasking information behaviors, often in libraries, as they seek and search for information on more than one information task. Multitasking information behaviors may consist of library search and use behaviors, or database or Web search sessions on multiple information tasks. However, few human information behavior models of seeking, searching or use, or library use models, include considerations of multitasking information behavior. This paper reports results from a case study exploring multitasking information behavior by an information seeker in a public library using diary, observation and interview data collection techniques. The information seeker sought information on four unrelated personal information tasks during two public library visits. Findings include a taxonomy of information behaviors; a sequential flowchart of the information seeker's complex and iterative processes, including multitasking information behavior, electronic searches, physical library searches, serendipitous browsing, and successive searches; and that the information seeker engaged in a process of 17 information task switches over two library visits. A model of information multitasking and information task switching is presented. Implications for library services and bibliographic instruction are also discussed.
  15. Jansen, B.J.; Booth, D.L.; Spink, A.: Patterns of query reformulation during Web searching (2009) 0.01
    0.0068425946 = product of:
      0.04789816 = sum of:
        0.041844364 = weight(_text_:web in 2936) [ClassicSimilarity], result of:
          0.041844364 = score(doc=2936,freq=8.0), product of:
            0.09670874 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.029633347 = queryNorm
            0.43268442 = fieldWeight in 2936, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2936)
        0.0060537956 = weight(_text_:information in 2936) [ClassicSimilarity], result of:
          0.0060537956 = score(doc=2936,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.116372846 = fieldWeight in 2936, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2936)
      0.14285715 = coord(2/14)
    
    Abstract
    Query reformulation is a key user behavior during Web search. Our research goal is to develop predictive models of query reformulation during Web searching. This article reports results from a study in which we automatically classified the query-reformulation patterns for 964,780 Web searching sessions, composed of 1,523,072 queries, to predict the next query reformulation. We employed an n-gram modeling approach to describe the probability of users transitioning from one query-reformulation state to another to predict their next state. We developed first-, second-, third-, and fourth-order models and evaluated each model for accuracy of prediction, coverage of the dataset, and complexity of the possible pattern set. The results show that Reformulation and Assistance account for approximately 45% of all query reformulations; furthermore, the results demonstrate that the first- and second-order models provide the best predictability, between 28 and 40% overall and higher than 70% for some patterns. Implications are that the n-gram approach can be used for improving searching systems and searching assistance.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.7, S.1358-1371
  16. Spink, A.; Losee, R.M.: Feedback in information retrieval (1996) 0.01
    0.00683917 = product of:
      0.04787419 = sum of:
        0.013980643 = weight(_text_:information in 7441) [ClassicSimilarity], result of:
          0.013980643 = score(doc=7441,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.2687516 = fieldWeight in 7441, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=7441)
        0.033893548 = weight(_text_:retrieval in 7441) [ClassicSimilarity], result of:
          0.033893548 = score(doc=7441,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.37811437 = fieldWeight in 7441, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=7441)
      0.14285715 = coord(2/14)
    
    Abstract
    State of the art review of the mechanisms of feedback in information retrieval (IR) in terms of feedback concepts and models in cybernetics and social sciences. Critically evaluates feedback research based on the traditional IR models and comparing the different approaches to automatic relevance feedback techniques, and feedback research within the framework of interactive IR models. Calls for an extension of the concept of feedback beyond relevance feedback to interactive feedback. Cites specific examples of feedback models used within IR research and presents 6 challenges to future research
    Source
    Annual review of information science and technology. 31(1996), S.33-78
  17. Spink, A.; Cole, C.: Introduction (2004) 0.01
    0.0068346933 = product of:
      0.04784285 = sum of:
        0.02387649 = weight(_text_:information in 2389) [ClassicSimilarity], result of:
          0.02387649 = score(doc=2389,freq=70.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.45898068 = fieldWeight in 2389, product of:
              8.3666 = tf(freq=70.0), with freq of:
                70.0 = termFreq=70.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2389)
        0.023966359 = weight(_text_:retrieval in 2389) [ClassicSimilarity], result of:
          0.023966359 = score(doc=2389,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.26736724 = fieldWeight in 2389, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.03125 = fieldNorm(doc=2389)
      0.14285715 = coord(2/14)
    
    Abstract
    This is the second part of a two-part special topic JASIST issue an information seeking. The first part presented papers an the topics of health information seeking and everyday life information seeking or ELIS (i.e., information seeking outside of work or school). This second issue presents papers an the topics of information retrieval and information seeking in industry environments. Information retrieval involves a specific kind of information seeking, as the user is in direct contact with an information interface and with potential sources of information from the system's database. The user conducts the search using various strategies, tactics, etc., but there is also the possibility that information processes will occur resulting in a change in the way the user thinks about the topic of the search. If this occurs, the user is, in effect, using the found data, turning it into an informational element of some kind. Such processes can be facilitated in the design of the information retrieval system. Information seeking in industry environments takes up more and more of our working day. Even companies producing industrial products are in fact mainly producing informational elements of some kind, often for the purpose of making decisions or as starting positions for further information seeking. While there may be company mechanisms in place to aid such information seeking, and to make it more efficient, if better information seeking structures were in place, not only would workers waste less time in informational pursuits, but they would also find things, discover new processes, etc., that would benefit the corporation's bottom line. In Figure l, we plot the six papers in this issue an an information behavior continuum, following a taxonomy of information behavior terms from Spink and Cole (2001). Information Behavior is a broad term covering all aspects of information seeking, including passive or undetermined information behavior. Information-Seeking Behavior is usually thought of as active or conscious information behavior. Information-Searching Behavior describes the interactive elements between a user and an information system. Information-Use Behavior is about the user's acquisition and incorporation of data in some kind of information process. This leads to the production of information, but also back to the broad range of Information Behavior in the first part of the continuum. Though we plot all papers in this issue along this continuum, they take into account more than their general framework. The three information retrieval reports veer from the traditional information-searching approach of usersystem interaction, while the three industry environment articles veer from the traditional information-seeking approach of specific context information-seeking studies.
    Footnote
    Einführung zum Themenheft: Information seeking research
    Source
    Journal of the American Society for Information Science and Technology. 55(2004) no.9, S.767-768
  18. Spink, A.; Saracevic, T.: Interaction in information retrieval : selection and effectiveness of search terms (1997) 0.01
    0.0066335746 = product of:
      0.04643502 = sum of:
        0.0104854815 = weight(_text_:information in 206) [ClassicSimilarity], result of:
          0.0104854815 = score(doc=206,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.20156369 = fieldWeight in 206, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=206)
        0.03594954 = weight(_text_:retrieval in 206) [ClassicSimilarity], result of:
          0.03594954 = score(doc=206,freq=8.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.40105087 = fieldWeight in 206, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=206)
      0.14285715 = coord(2/14)
    
    Abstract
    We investigated the sources and effectiveness of search terms used during mediated on-line searching under real-life (as opposed to laboratory) circumstances. A stratified model of information retrieval (IR) interaction served as a framework for the analysis. For the analysis, we used the on-line transaction logs, videotapes, and transcribed dialogue of the presearch and on-line interaction between 40 users and 4 professional intermediaries. Each user provided one question and interacted with one of the four intermediaries. Searching was done using DIALOG. Five sources of search terms were identified: (1) the users' written question statements, (2) terms derived from users' domain knowledge during the interaction, (3) terms extracted from retrieved items as relevance feedback, (4) database thesaurus, and (5) terms derived by intermediaries during the interaction. Distribution, retrieval effectiveness, transition sequences, and correlation of search terms from different sources were investigated. Search terms from users' written question statements and term relevance feedback were the most productive sources of terms contributing to the retrieval of items judged relevant by users. Implications of the findings are discussed
    Source
    Journal of the American Society for Information Science. 48(1997) no.8, S.741-761
  19. Spink, A.; Saracevic, T.: Where do the search terms come from? (1992) 0.01
    0.00599504 = product of:
      0.041965276 = sum of:
        0.008071727 = weight(_text_:information in 4032) [ClassicSimilarity], result of:
          0.008071727 = score(doc=4032,freq=2.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.1551638 = fieldWeight in 4032, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4032)
        0.033893548 = weight(_text_:retrieval in 4032) [ClassicSimilarity], result of:
          0.033893548 = score(doc=4032,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.37811437 = fieldWeight in 4032, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0625 = fieldNorm(doc=4032)
      0.14285715 = coord(2/14)
    
    Abstract
    Presents selected results from a large study which observed under real-life conditions the interaction between users, intermediaries and computers before and during online searching. Concentrates on the sources of search terms and the relation between given search terms and retrieval of relevant and nonrelevant items as answers. Users provided the largest proportion of search terms (61%), followed by the thesuaurs (19%), relevance feedback (11%), and intermediary (9%). Only 4% of search terms resulted in retrieval of relevant items only; 60% retrieved relevant and nonrelevant items; 25% retrieved nonrelevant items only; and 11% retrieved nothing.
    Imprint
    Medford : Learned Information Inc.
  20. Spink, A.; Saracevic, T.: Sources and use of search terms in online searching (1992) 0.01
    0.005984274 = product of:
      0.041889917 = sum of:
        0.012233062 = weight(_text_:information in 4523) [ClassicSimilarity], result of:
          0.012233062 = score(doc=4523,freq=6.0), product of:
            0.052020688 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.029633347 = queryNorm
            0.23515764 = fieldWeight in 4523, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4523)
        0.029656855 = weight(_text_:retrieval in 4523) [ClassicSimilarity], result of:
          0.029656855 = score(doc=4523,freq=4.0), product of:
            0.08963835 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.029633347 = queryNorm
            0.33085006 = fieldWeight in 4523, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4523)
      0.14285715 = coord(2/14)
    
    Abstract
    Reports selected results from a larger study whose objectives are to observe, under real life conditions, the nature and patterns of interaction between users, intermediaries, and computer sysrtems in the context of online information searching and retrieval. Reports various analyses on the relation of search term sources and the retrieval of items judges as to their relevance. While the users generated the largest proportion of search terms (61%) which were responsible for 68% of retrieved items judges relevant, other sources in the interaction process played an important role
    Imprint
    Medford, NJ : Learned Information Inc.
    Source
    Proceedings of the 55th Annual Meeting of the American Society for Information Science, Pittsburgh, 26.-29.10.92. Ed.: D. Shaw