Search (37 results, page 1 of 2)

  • × language_ss:"d"
  • × theme_ss:"Wissensrepräsentation"
  • × type_ss:"a"
  1. Gams, E.; Mitterdorfer, D.: Semantische Content Management Systeme (2009) 0.04
    0.0448727 = product of:
      0.1346181 = sum of:
        0.057803504 = weight(_text_:wide in 4865) [ClassicSimilarity], result of:
          0.057803504 = score(doc=4865,freq=2.0), product of:
            0.19679762 = queryWeight, product of:
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.044416238 = queryNorm
            0.29372054 = fieldWeight in 4865, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4307585 = idf(docFreq=1430, maxDocs=44218)
              0.046875 = fieldNorm(doc=4865)
        0.07681459 = weight(_text_:web in 4865) [ClassicSimilarity], result of:
          0.07681459 = score(doc=4865,freq=12.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.5299281 = fieldWeight in 4865, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4865)
      0.33333334 = coord(2/6)
    
    Abstract
    Content Management Systeme (CMS) sind in vielen Organisationen bereits seit längerer Zeit fester Bestandteil zur Verwaltung und kollaborativen Bearbeitung von Text- und Multimedia-Inhalten. Im Zuge der rasch ansteigenden Fülle an Informationen und somit auch Wissen wird die Überschaubarkeit der Datenbestände jedoch massiv eingeschränkt. Diese und zusätzliche Anforderungen, wie automatisch Datenquellen aus dem World Wide Web (WWW) zu extrahieren, lassen traditionelle CMS immer mehr an ihre Grenzen stoßen. Dieser Beitrag diskutiert die neuen Herausforderungen an traditionelle CMS und bietet Lösungsvorschläge, wie CMS kombiniert mit semantischen Technologien diesen Herausforderungen begegnen können. Die Autoren stellen eine generische Systemarchitektur für Content Management Systeme vor, die einerseits Inhalte für das Semantic Web generieren, andererseits Content aus dem Web 2.0 syndizieren können und bei der Aufbereitung des Content den User mittels semantischer Technologien wie Reasoning oder Informationsextraktion unterstützen. Dabei wird auf Erfahrungen bei der prototypischen Implementierung von semantischer Technologie in ein bestehendes CMS System zurückgegriffen.
    Object
    Web 2.0
    Source
    Social Semantic Web: Web 2.0, was nun? Hrsg.: A. Blumauer u. T. Pellegrini
  2. Nielsen, M.: Neuronale Netze : Alpha Go - Computer lernen Intuition (2018) 0.03
    0.031876236 = product of:
      0.09562871 = sum of:
        0.06553978 = weight(_text_:computer in 4523) [ClassicSimilarity], result of:
          0.06553978 = score(doc=4523,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.40377006 = fieldWeight in 4523, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.078125 = fieldNorm(doc=4523)
        0.030088935 = product of:
          0.06017787 = sum of:
            0.06017787 = weight(_text_:22 in 4523) [ClassicSimilarity], result of:
              0.06017787 = score(doc=4523,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.38690117 = fieldWeight in 4523, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4523)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Source
    Spektrum der Wissenschaft. 2018, H.1, S.22-27
  3. Hohmann, G.: ¬Die Anwendung des CIDOC-CRM für die semantische Wissensrepräsentation in den Kulturwissenschaften (2010) 0.02
    0.020800762 = product of:
      0.062402282 = sum of:
        0.04434892 = weight(_text_:web in 4011) [ClassicSimilarity], result of:
          0.04434892 = score(doc=4011,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3059541 = fieldWeight in 4011, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4011)
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 4011) [ClassicSimilarity], result of:
              0.03610672 = score(doc=4011,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 4011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4011)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Das CIDOC Conceptual Reference Model (CRM) ist eine Ontologie für den Bereich des Kulturellen Erbes, die als ISO 21127 standardisiert ist. Inzwischen liegen auch OWL-DL-Implementationen des CRM vor, die ihren Einsatz auch im Semantic Web ermöglicht. OWL-DL ist eine entscheidbare Untermenge der Web Ontology Language, die vom W3C spezifiziert wurde. Lokale Anwendungsontologien, die ebenfalls in OWL-DL modelliert werden, können über Subklassenbeziehungen mit dem CRM als Referenzontologie verbunden werden. Dadurch wird es automatischen Prozessen ermöglicht, autonom heterogene Daten semantisch zu validieren, zueinander in Bezug zu setzen und Anfragen über verschiedene Datenbestände innerhalb der Wissensdomäne zu verarbeiten und zu beantworten.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  4. Ma, N.; Zheng, H.T.; Xiao, X.: ¬An ontology-based latent semantic indexing approach using long short-term memory networks (2017) 0.02
    0.019634247 = product of:
      0.05890274 = sum of:
        0.026132854 = weight(_text_:web in 3810) [ClassicSimilarity], result of:
          0.026132854 = score(doc=3810,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.18028519 = fieldWeight in 3810, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3810)
        0.03276989 = weight(_text_:computer in 3810) [ClassicSimilarity], result of:
          0.03276989 = score(doc=3810,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.20188503 = fieldWeight in 3810, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3810)
      0.33333334 = coord(2/6)
    
    Series
    Lecture notes in computer science; vol.10366
    Source
    Web and Big Data: First International Joint Conference, APWeb-WAIM 2017, Beijing, China, July 7-9, 2017, Proceedings, Part I. Eds.: L. Chen et al
  5. Weller, K.: Anforderungen an die Wissensrepräsentation im Social Semantic Web (2010) 0.02
    0.018292997 = product of:
      0.10975798 = sum of:
        0.10975798 = weight(_text_:web in 4061) [ClassicSimilarity], result of:
          0.10975798 = score(doc=4061,freq=18.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.75719774 = fieldWeight in 4061, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4061)
      0.16666667 = coord(1/6)
    
    Abstract
    Dieser Artikel gibt einen Einblick in die aktuelle Verschmelzung von Web 2.0-und Semantic Web-Ansätzen, die als Social Semantic Web beschrieben werden kann. Die Grundidee des Social Semantic Web wird beschrieben und einzelne erste Anwendungsbeispiele vorgestellt. Ein wesentlicher Schwerpunkt dieser Entwicklung besteht in der Umsetzung neuer Methoden und Herangehensweisen im Bereich der Wissensrepräsentation. Dieser Artikel stellt vier Schwerpunkte vor, in denen sich die Wissensrepräsentationsmethoden im Social Semantic Web weiterentwickeln müssen und geht dabei jeweils auf den aktuellen Stand ein.
    Object
    Web 2.0
    Source
    Semantic web & linked data: Elemente zukünftiger Informationsinfrastrukturen ; 1. DGI-Konferenz ; 62. Jahrestagung der DGI ; Frankfurt am Main, 7. - 9. Oktober 2010 ; Proceedings / Deutsche Gesellschaft für Informationswissenschaft und Informationspraxis. Hrsg.: M. Ockenfeld
    Theme
    Semantic Web
  6. Semenova, E.: Ontologie als Begriffssystem : Theoretische Überlegungen und ihre praktische Umsetzung bei der Entwicklung einer Ontologie der Wissenschaftsdisziplinen (2010) 0.02
    0.016470928 = product of:
      0.049412783 = sum of:
        0.031359423 = weight(_text_:web in 4095) [ClassicSimilarity], result of:
          0.031359423 = score(doc=4095,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.21634221 = fieldWeight in 4095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=4095)
        0.01805336 = product of:
          0.03610672 = sum of:
            0.03610672 = weight(_text_:22 in 4095) [ClassicSimilarity], result of:
              0.03610672 = score(doc=4095,freq=2.0), product of:
                0.1555381 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044416238 = queryNorm
                0.23214069 = fieldWeight in 4095, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4095)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Das Konzept des Semantic Web befindet sich gegenwärtig auf dem Weg von der Vision zur Realisierung und ist "noch gestaltbar", ebenso wie eine seiner Grundkonzeptionen, die Ontologie. Trotz der stetig wachsenden Anzahl der Forschungsarbeiten werden Ontologien primär aus der Sicht semantischer Technologien untersucht, Probleme der Ontologie als Begriffssystem werden in der Ontologieforschung nur partiell angetastet - für die praktische Arbeit erweist sich dieses als bedeutender Mangel. In diesem Bericht wird die Notwendigkeit, eine Ontologie aus der Sicht der Dokumentationssprache zu erforschen, als Fragestellung formuliert, außerdem werden einige schon erarbeitete theoretische Ansätze skizzenhaft dargestellt. Als Beispiel aus der Praxis wird das Material des von der DFG geförderten und am Hermann von Helmholtz-Zentrum für Kulturtechnik der Humboldt Universität zu Berlin durchgeführten Projektes "Entwicklung einer Ontologie der Wissenschaftsdisziplinen" einbezogen.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  7. Panzer, M.: DDC, SKOS, and linked data on the Web (2008) 0.01
    0.0147829745 = product of:
      0.08869784 = sum of:
        0.08869784 = weight(_text_:web in 4478) [ClassicSimilarity], result of:
          0.08869784 = score(doc=4478,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.6119082 = fieldWeight in 4478, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.09375 = fieldNorm(doc=4478)
      0.16666667 = coord(1/6)
    
    Source
    Everything need not be miscellaneous: controlled vocabularies and classification in a Web world, OCLC/ISKO-NA Preconference Workshop,10th International ISKO Conference, Montreal, Canada, August 5-8, 2008
  8. Semantic Media Wiki : Autoren sollen Wiki-Inhalte erschließen (2006) 0.01
    0.013743973 = product of:
      0.04123192 = sum of:
        0.018292999 = weight(_text_:web in 6027) [ClassicSimilarity], result of:
          0.018292999 = score(doc=6027,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.12619963 = fieldWeight in 6027, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.02734375 = fieldNorm(doc=6027)
        0.02293892 = weight(_text_:computer in 6027) [ClassicSimilarity], result of:
          0.02293892 = score(doc=6027,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.14131951 = fieldWeight in 6027, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.02734375 = fieldNorm(doc=6027)
      0.33333334 = coord(2/6)
    
    Content
    "Mit einer semantischen Erweiterung der Software MediaWiki ist es dem Forschungsteam Wissensmanagement des Instituts für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB) der Universität Karlsruhe (TH) gelungen, das Interesse der internationalen Fachwelt auf sich zu ziehen. Die jungen Forscher Denny Vrandecic und Markus Krötzsch aus dem Team von Professor Dr. Rudi Studer machen die Inhalte von Websites, die mit MediaWiki geschrieben sind, für Maschinen besser auswertbar. Ihr Konzept zur besseren Erschließung der Inhalte geht allerdings nur auf, wenn die Wiki-Autoren aktiv mitarbeiten. Die Karlsruher Forscher setzen auf eine Kombination aus sozialer und technischer Lösung: Sie hoffen, dass sich auf der Basis ihrer Wiki-PlugIn-Software "Semantic MediaWiki" eine Art kollektive Indexierung der Wiki-Artikel durch die Autoren entwickelt - und ernten für diese Idee viel Beifall. Semantic MediaWiki wird bereits auf mehreren Websites mit begrenztem Datenvolumen erfolgreich eingesetzt, unter anderen zur Erschließung der Bibel-Inhalte (URLs siehe Kasten). Nun testen die Karlsruher Forscher, ob ihr Programm auch den gigantischen Volumenanforderungen der freien Web-Enzyklopädie Wikipedia gewachsen ist. Die Wikimedia Foundation Inc., Betreiber von Wikipedia, stellt ihnen für den Test rund 50 Gigabyte Inhalt der englischen Wikipedia-Ausgabe zur Verfügung und hat Interesse an einer Zusammenarbeit signalisiert. Semantic MediaWiki steht als Open Source Software (PHP) auf der Website Sourceforge zur Verfügung. Semantic MediaWiki ist ein relativ einfach zu bedienendes Werkzeug, welches auf leistungsstarken semantischen Wissensmanagement-Technologien aufbaut. Die Autoren können mit dem Werkzeug die Querverweise (Links), die sie in ihrem Text als Weiterleitung zu Hintergrundinformationen angeben, bei der Eingabe als Link eines bestimmten Typs kennzeichnen (typed links) und Zahlenangaben und Fakten im Text als Attribute (attributes) markieren. Bei dem Eintrag zu "Ägypten" steht dann zum Bespiel der typisierte Link "[[ist Land von::Afrika]]" / "[[is country of::africa]]", ein Attribut könnte "[[Bevölkerung:=76,000,000]]" / "[[population:=76,000,000]]" sein. Die von den Autoren erzeugten, typisierten Links werden in einer Datenbank als Dreier-Bezugsgruppen (Triple) abgelegt; die gekennzeichneten Attribute als feststehende Werte gespeichert. Die Autoren können die Relationen zur Definition der Beziehungen zwischen den verlinkten Begriffen frei wählen, z.B. "ist ...von' / "is...of", "hat..." /"has ...". Eingeführte Relationen stehen als "bisher genutzte Relationen" den anderen Schreibern für deren Textindexierung zur Verfügung.
    Aus den so festgelegten Beziehungen zwischen den verlinkten Begriffen sollen Computer automatisch sinnvolle Antworten auf komplexere Anfragen generieren können; z.B. eine Liste erzeugen, in der alle Länder von Afrika aufgeführt sind. Die Ländernamen führen als Link zurück zu dem Eintrag, in dem sie stehen - dem Artikel zum Land, für das man sich interessiert. Aus informationswissenschaftlicher Sicht ist das Informationsergebnis, das die neue Technologie produziert, relativ simpel. Aus sozialwissenschaftlicher Sicht steckt darin aber ein riesiges Potential zur Verbesserung der Bereitstellung von enzyklopädischer Information und Wissen für Menschen auf der ganzen Welt. Spannend ist auch die durch Semantic MediaWiki gegebene Möglichkeit der automatischen Zusammenführung von Informationen, die in den verschiedenen Wiki-Einträgen verteilt sind, bei einer hohen Konsistenz der Ergebnisse. Durch die feststehenden Beziehungen zwischen den Links enthält die automatisch erzeugte Liste nach Angaben der Karlsruher Forscher immer die gleichen Daten, egal, von welcher Seite aus man sie abruft. Die Suchmaschine holt sich die Bevölkerungszahl von Ägypten immer vom festgelegten Ägypten-Eintrag, so dass keine unterschiedlichen Zahlen in der Wiki-Landschaft kursieren können. Ein mit Semantic MediaWiki erstellter Testeintrag zu Deutschland kann unter http://ontoworld.org/index.php/Germany eingesehen werden. Die Faktenbox im unteren Teil des Eintrags zeigt an, was der "Eintrag" der Suchmaschine an Wissen über Deutschland anbieten kann. Diese Ergebnisse werden auch in dem Datenbeschreibungsstandard RDF angeboten. Mehr als das, was in der Faktenbox steht, kann der Eintrag nicht an die Suchmaschine abgeben."
  9. Voß, J.: Vom Social Tagging zum Semantic Tagging (2008) 0.01
    0.012195333 = product of:
      0.073171996 = sum of:
        0.073171996 = weight(_text_:web in 2884) [ClassicSimilarity], result of:
          0.073171996 = score(doc=2884,freq=8.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.50479853 = fieldWeight in 2884, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2884)
      0.16666667 = coord(1/6)
    
    Abstract
    Social Tagging als freie Verschlagwortung durch Nutzer im Web wird immer häufiger mit der Idee des Semantic Web in Zusammenhang gebracht. Wie beide Konzepte in der Praxis konkret zusammenkommen sollen, bleibt jedoch meist unklar. Dieser Artikel soll hier Aufklärung leisten, indem die Kombination von Social Tagging und Semantic Web in Form von Semantic Tagging mit dem Simple Knowledge Organisation System dargestellt und auf die konkreten Möglichkeiten, Vorteile und offenen Fragen der Semantischen Indexierung eingegangen wird.
    Theme
    Semantic Web
  10. Hausenblas, M.: Anreicherung von Webinhalten mit Semantik : Microformats und RDFa (2009) 0.01
    0.012070249 = product of:
      0.07242149 = sum of:
        0.07242149 = weight(_text_:web in 4862) [ClassicSimilarity], result of:
          0.07242149 = score(doc=4862,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.49962097 = fieldWeight in 4862, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=4862)
      0.16666667 = coord(1/6)
    
    Source
    Social Semantic Web: Web 2.0, was nun? Hrsg.: A. Blumauer u. T. Pellegrini
    Theme
    Semantic Web
  11. Angerer, C.: Neuronale Netze : Revolution für die Wissenschaft? (2018) 0.01
    0.010923296 = product of:
      0.06553978 = sum of:
        0.06553978 = weight(_text_:computer in 4023) [ClassicSimilarity], result of:
          0.06553978 = score(doc=4023,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.40377006 = fieldWeight in 4023, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.078125 = fieldNorm(doc=4023)
      0.16666667 = coord(1/6)
    
    Abstract
    Ein Konzept aus den 1980er Jahren nimmt durch neue Entwicklungen in der Computer-Hardware einen kometenhaften Aufschwung. Vielschichtige, »tiefe« neuronale Netze revolutionieren nicht nur die Bilderkennung und die Datenanalyse, sondern gewinnen inzwischen auch wissenschaftliche Erkenntnisse.
  12. Dröge, E.: Leitfaden für das Verbinden von Ontologien (2010) 0.01
    0.010561468 = product of:
      0.063368805 = sum of:
        0.063368805 = weight(_text_:web in 3507) [ClassicSimilarity], result of:
          0.063368805 = score(doc=3507,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.43716836 = fieldWeight in 3507, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3507)
      0.16666667 = coord(1/6)
    
    Abstract
    In Tim Berners Lees Vorstellung von einem Semantic Web wird das zur Zeit existierende Web um maschinenlesbare Metadaten, die in Form von Ontologien repräsentiert werden, erweitert und so mit semantischen Zusätzen versehen. Wie auch das WWW ist das Semantic Web dezentral aufgebaut, also werden Ontologien von unterschiedlichen Gruppen von Menschen zu den unterschiedlichsten Themengebieten erstellt. Um daraus ein Netz aus Informationen zu schaffen, müssen diese miteinander verbunden werden. Das geschieht über semantische oder syntaktische Matchingverfahren, denen ein Merging oder ein Mapping der Ontologien folgt. In dieser Arbeit wird genauer auf die einzelnen Methoden und die Zukunft des Semantic Webs eingegangen.
  13. Reif, G.: Semantische Annotation (2006) 0.01
    0.009855317 = product of:
      0.059131898 = sum of:
        0.059131898 = weight(_text_:web in 5807) [ClassicSimilarity], result of:
          0.059131898 = score(doc=5807,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 5807, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=5807)
      0.16666667 = coord(1/6)
    
    Abstract
    In diesem Kapitel wird zuerst der Begriff Semantische Annotation eingeführt und es werden Techniken besprochen um die Annotationen mit dem ursprünglichen Dokument zu verknüpfen. Weiters wird auf Probleme eingegangen, die sich beim Erstellen der Annotationen ergeben. Im Anschluss daran werden Software Tools vorgestellt, die einen Benutzer beim Annotierungsprozess unterstützen. Zum Abschluss werden Methoden diskutiert, die den Annotierungsvorgang in den Entwicklungsprozess einer Web Applikation integrieren.
    Source
    Semantic Web: Wege zur vernetzten Wissensgesellschaft. Hrsg.: T. Pellegrini, u. A. Blumauer
  14. Baumer, C.; Reichenberger, K.: Business Semantics - Praxis und Perspektiven (2006) 0.01
    0.009855317 = product of:
      0.059131898 = sum of:
        0.059131898 = weight(_text_:web in 6020) [ClassicSimilarity], result of:
          0.059131898 = score(doc=6020,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.4079388 = fieldWeight in 6020, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=6020)
      0.16666667 = coord(1/6)
    
    Abstract
    Der Artikel führt in semantische Technologien ein und gewährt Einblick in unterschiedliche Entwicklungsrichtungen. Insbesondere werden Business Semantics vorgestellt und vom Semantic Web abgegrenzt. Die Stärken von Business Semantics werden speziell an den Praxisbeispielen des Knowledge Portals und dem Projekt "Knowledge Base" der Wienerberger AG veranschaulicht. So werden die Anforderungen - was brauchen Anwendungen in Unternehmen heute - und die Leistungsfähigkeit von Systemen - was bieten Business Semantics - konkretisiert und gegenübergestellt.
    Theme
    Semantic Web
  15. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.01
    0.009052687 = product of:
      0.054316122 = sum of:
        0.054316122 = weight(_text_:web in 3731) [ClassicSimilarity], result of:
          0.054316122 = score(doc=3731,freq=6.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.37471575 = fieldWeight in 3731, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=3731)
      0.16666667 = coord(1/6)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
    Theme
    Semantic Web
  16. Werrmann, J.: Modellierung im Kontext : Ontologie-basiertes Information Retrieval (2011) 0.01
    0.008738637 = product of:
      0.05243182 = sum of:
        0.05243182 = weight(_text_:computer in 1141) [ClassicSimilarity], result of:
          0.05243182 = score(doc=1141,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.32301605 = fieldWeight in 1141, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.0625 = fieldNorm(doc=1141)
      0.16666667 = coord(1/6)
    
    Imprint
    Hagen : Fernuniversität; Department of mathematics and computer science
  17. Derntl, M.; Hampel, T.; Motschnig, R.; Pitner, T.: Social Tagging und Inclusive Universal Access (2008) 0.01
    0.0073914872 = product of:
      0.04434892 = sum of:
        0.04434892 = weight(_text_:web in 2864) [ClassicSimilarity], result of:
          0.04434892 = score(doc=2864,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.3059541 = fieldWeight in 2864, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.046875 = fieldNorm(doc=2864)
      0.16666667 = coord(1/6)
    
    Abstract
    Der vorliegende Artikel beleuchtet und bewertet Social Tagging als aktuelles Phänomen des Web 2.0 im Kontext bekannter Techniken der semantischen Datenorganisation. Tagging wird in einen Raum verwandter Ordnungs- und Strukturierungsansätze eingeordnet, um die fundamentalen Grundlagen des Social Tagging zu identifizieren und zuzuweisen. Dabei wird Tagging anhand des Inclusive Universal Access Paradigmas bewertet, das technische als auch menschlich-soziale Kriterien für die inklusive und barrierefreie Bereitstellung und Nutzung von Diensten definiert. Anhand dieser Bewertung werden fundamentale Prinzipien des "Inclusive Social Tagging" hergeleitet, die der Charakterisierung und Bewertung gängiger Tagging-Funktionalitäten in verbreiteten Web-2.0-Diensten dienen. Aus der Bewertung werden insbesondere Entwicklungsmöglichkeiten von Social Tagging und unterstützenden Diensten erkennbar.
  18. Finke, M.; Risch, J.: "Match Me If You Can" : Sammeln und semantisches Aufbereiten von Fußballdaten (2017) 0.01
    0.006968761 = product of:
      0.041812565 = sum of:
        0.041812565 = weight(_text_:web in 3723) [ClassicSimilarity], result of:
          0.041812565 = score(doc=3723,freq=2.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.2884563 = fieldWeight in 3723, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0625 = fieldNorm(doc=3723)
      0.16666667 = coord(1/6)
    
    Theme
    Semantic Web
  19. Hunger, M.; Neubauer, P.: ¬Die vernetzte Welt : Abfragesprachen für Graphendatenbanken (2013) 0.01
    0.0065539777 = product of:
      0.039323866 = sum of:
        0.039323866 = weight(_text_:computer in 1101) [ClassicSimilarity], result of:
          0.039323866 = score(doc=1101,freq=2.0), product of:
            0.16231956 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.044416238 = queryNorm
            0.24226204 = fieldWeight in 1101, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=1101)
      0.16666667 = coord(1/6)
    
    Abstract
    Graphendatenbanken sind darauf optimiert, stark miteinander vernetzte Informationen effizient zu speichern und greifbar zu machen. Welchen Ansprüchen müssen Abfragesprachen genügen, damit sie für die Arbeit mit diesen Datenbanken geeignet sind? Bei der Aufarbeitung realer Informationen zeigt sich, dass ein hoher, aber unterschätzter Wert in den Beziehungen zwischen Elementen steckt. Seien es Ereignisse aus Geschichte und Politik, Personen in realen und virtuellen sozialen Netzen, Proteine und Gene, Abhängigkeiten in Märkten und Ökonomien oder Rechnernetze, Computer, Software und Anwender - alles ist miteinander verbunden. Der Graph ist ein Datenmodell, das solche Verbindungsgeflechte abbilden kann. Leider lässt sich das Modell mit relationalen und Aggregat-orientierten NoSQL-Datenbanken ab einer gewissen Komplexität jedoch schwer handhaben. Graphendatenbanken sind dagegen darauf optimiert, solche stark miteinander vernetzten Informationen effizient zu speichern und greifbar zu machen. Auch komplexe Fragen lassen sich durch ausgefeilte Abfragen schnell beantworten. Hierbei kommt es auf die geeignete Abfragesprache an.
  20. Sigel, A.: Wissensorganisation, Topic Maps und Ontology Engineering : Die Verbindung bewährter Begriffsstrukturen mit aktueller XML Technologie (2004) 0.01
    0.006159573 = product of:
      0.036957435 = sum of:
        0.036957435 = weight(_text_:web in 3236) [ClassicSimilarity], result of:
          0.036957435 = score(doc=3236,freq=4.0), product of:
            0.14495286 = queryWeight, product of:
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.044416238 = queryNorm
            0.25496176 = fieldWeight in 3236, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2635105 = idf(docFreq=4597, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3236)
      0.16666667 = coord(1/6)
    
    Abstract
    Wie können begriffliche Strukturen an Topic Maps angebunden werden? Allgemeiner. Wie kann die Wissensorganisation dazu beitragen, dass im Semantic Web eine begriffsbasierte Infrastruktur verfügbar ist? Dieser Frage hat sich die Wissensorganisation bislang noch nicht wirklich angenommen. Insgesamt ist die Berührung zwischen semantischen Wissenstechnologien und wissensorganisatorischen Fragestellungen noch sehr gering, obwohl Begriffsstrukturen, Ontologien und Topic Maps grundsätzlich gut zusammenpassen und ihre gemeinsame Betrachtung Erkenntnisse für zentrale wissensorganisatorische Fragestellungen wie z.B. semantische Interoperabilität und semantisches Retrieval erwarten lässt. Daher motiviert und skizziert dieser Beitrag die Grundidee, nach der es möglich sein müsste, eine Sprache zur Darstellung von Begriffsstrukturen in der Wissensorganisation geeignet mit Topic Maps zu verbinden. Eine genauere Untersuchung und Implementation stehen allerdings weiterhin aus. Speziell wird vermutet, dass sich der Concepto zugrunde liegende Formalismus CLF (Concept Language Formalism) mit Topic Maps vorteilhaft abbilden lässt 3 Damit können Begriffs- und Themennetze realisiert werden, die auf expliziten Begriffssystemen beruhen. Seitens der Wissensorganisation besteht die Notwendigkeit, sich mit aktuellen Entwicklungen auf dem Gebiet des Semantic Web und ontology engineering vertraut zu machen, aber auch die eigene Kompetenz stärker aktiv in diese Gebiete einzubringen. Damit dies geschehen kann, führt dieser Beitrag zum besseren Verständnis zunächst aus Sicht der Wissensorganisation knapp in Ontologien und Topic Maps ein und diskutiert wichtige Überschneidungsbereiche.