Search (8 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Automatisches Abstracting"
  • × year_i:[2000 TO 2010}
  1. Lam, W.; Chan, K.; Radev, D.; Saggion, H.; Teufel, S.: Context-based generic cross-lingual retrieval of documents and automated summaries (2005) 0.01
    0.006877549 = product of:
      0.020632647 = sum of:
        0.020632647 = product of:
          0.06189794 = sum of:
            0.06189794 = weight(_text_:retrieval in 1965) [ClassicSimilarity], result of:
              0.06189794 = score(doc=1965,freq=8.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.40105087 = fieldWeight in 1965, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1965)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    We develop a context-based generic cross-lingual retrieval model that can deal with different language pairs. Our model considers contexts in the query translation process. Contexts in the query as weIl as in the documents based an co-occurrence statistics from different granularity of passages are exploited. We also investigate cross-lingual retrieval of automatic generic summaries. We have implemented our model for two different cross-lingual settings, namely, retrieving Chinese documents from English queries as weIl as retrieving English documents from Chinese queries. Extensive experiments have been conducted an a large-scale parallel corpus enabling studies an retrieval performance for two different cross-lingual settings of full-length documents as weIl as automated summaries.
  2. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.00
    0.0046085827 = product of:
      0.013825747 = sum of:
        0.013825747 = product of:
          0.04147724 = sum of:
            0.04147724 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
              0.04147724 = score(doc=948,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23214069 = fieldWeight in 948, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=948)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
  3. Moens, M.F.; Dumortier, J.: Use of a text grammar for generating highlight abstracts of magazine articles (2000) 0.00
    0.004038437 = product of:
      0.01211531 = sum of:
        0.01211531 = product of:
          0.03634593 = sum of:
            0.03634593 = weight(_text_:online in 4540) [ClassicSimilarity], result of:
              0.03634593 = score(doc=4540,freq=2.0), product of:
                0.1548489 = queryWeight, product of:
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23471867 = fieldWeight in 4540, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0349014 = idf(docFreq=5778, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4540)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Browsing a database of article abstracts is one way to select and buy relevant magazine articles online. Our research contributes to the design and development of text grammars for abstracting texts in unlimited subject domains. We developed a system that parses texts based on the text grammar of a specific text type and that extracts sentences and statements which are relevant for inclusion in the abstracts. The system employs knowledge of the discourse patterns that are typical of news stories. The results are encouraging and demonstrate the importance of discourse structures in text summarisation.
  4. Moens, M.-F.: Summarizing court decisions (2007) 0.00
    0.004011904 = product of:
      0.012035711 = sum of:
        0.012035711 = product of:
          0.03610713 = sum of:
            0.03610713 = weight(_text_:retrieval in 954) [ClassicSimilarity], result of:
              0.03610713 = score(doc=954,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23394634 = fieldWeight in 954, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=954)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    In the field of law there is an absolute need for summarizing the texts of court decisions in order to make the content of the cases easily accessible for legal professionals. During the SALOMON and MOSAIC projects we investigated the summarization and retrieval of legal cases. This article presents some of the main findings while integrating the research results of experiments on legal document summarization by other research groups. In addition, we propose novel avenues of research for automatic text summarization, which we currently exploit when summarizing court decisions in the ACILA project. Techniques for automated concept learning and argument recognition are here the most challenging.
  5. Dunlavy, D.M.; O'Leary, D.P.; Conroy, J.M.; Schlesinger, J.D.: QCS: A system for querying, clustering and summarizing documents (2007) 0.00
    0.003970755 = product of:
      0.011912264 = sum of:
        0.011912264 = product of:
          0.03573679 = sum of:
            0.03573679 = weight(_text_:retrieval in 947) [ClassicSimilarity], result of:
              0.03573679 = score(doc=947,freq=6.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.23154683 = fieldWeight in 947, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.03125 = fieldNorm(doc=947)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    Information retrieval systems consist of many complicated components. Research and development of such systems is often hampered by the difficulty in evaluating how each particular component would behave across multiple systems. We present a novel integrated information retrieval system-the Query, Cluster, Summarize (QCS) system-which is portable, modular, and permits experimentation with different instantiations of each of the constituent text analysis components. Most importantly, the combination of the three types of methods in the QCS design improves retrievals by providing users more focused information organized by topic. We demonstrate the improved performance by a series of experiments using standard test sets from the Document Understanding Conferences (DUC) as measured by the best known automatic metric for summarization system evaluation, ROUGE. Although the DUC data and evaluations were originally designed to test multidocument summarization, we developed a framework to extend it to the task of evaluation for each of the three components: query, clustering, and summarization. Under this framework, we then demonstrate that the QCS system (end-to-end) achieves performance as good as or better than the best summarization engines. Given a query, QCS retrieves relevant documents, separates the retrieved documents into topic clusters, and creates a single summary for each cluster. In the current implementation, Latent Semantic Indexing is used for retrieval, generalized spherical k-means is used for the document clustering, and a method coupling sentence "trimming" and a hidden Markov model, followed by a pivoted QR decomposition, is used to create a single extract summary for each cluster. The user interface is designed to provide access to detailed information in a compact and useful format. Our system demonstrates the feasibility of assembling an effective IR system from existing software libraries, the usefulness of the modularity of the design, and the value of this particular combination of modules.
  6. Wu, Y.-f.B.; Li, Q.; Bot, R.S.; Chen, X.: Finding nuggets in documents : a machine learning approach (2006) 0.00
    0.0038404856 = product of:
      0.011521457 = sum of:
        0.011521457 = product of:
          0.03456437 = sum of:
            0.03456437 = weight(_text_:22 in 5290) [ClassicSimilarity], result of:
              0.03456437 = score(doc=5290,freq=2.0), product of:
                0.17867287 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051022716 = queryNorm
                0.19345059 = fieldWeight in 5290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5290)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 17:25:48
  7. Nomoto, T.: Discriminative sentence compression with conditional random fields (2007) 0.00
    0.0034387745 = product of:
      0.0103163235 = sum of:
        0.0103163235 = product of:
          0.03094897 = sum of:
            0.03094897 = weight(_text_:retrieval in 945) [ClassicSimilarity], result of:
              0.03094897 = score(doc=945,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.20052543 = fieldWeight in 945, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.046875 = fieldNorm(doc=945)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper focuses on a particular approach to automatic sentence compression which makes use of a discriminative sequence classifier known as Conditional Random Fields (CRF). We devise several features for CRF that allow it to incorporate information on nonlinear relations among words. Along with that, we address the issue of data paucity by collecting data from RSS feeds available on the Internet, and turning them into training data for use with CRF, drawing on techniques from biology and information retrieval. We also discuss a recursive application of CRF on the syntactic structure of a sentence as a way of improving the readability of the compression it generates. Experiments found that our approach works reasonably well compared to the state-of-the-art system [Knight, K., & Marcu, D. (2002). Summarization beyond sentence extraction: A probabilistic approach to sentence compression. Artificial Intelligence 139, 91-107.].
  8. Jones, S.; Paynter, G.W.: Automatic extractionof document keyphrases for use in digital libraries : evaluations and applications (2002) 0.00
    0.0028656456 = product of:
      0.008596936 = sum of:
        0.008596936 = product of:
          0.025790809 = sum of:
            0.025790809 = weight(_text_:retrieval in 601) [ClassicSimilarity], result of:
              0.025790809 = score(doc=601,freq=2.0), product of:
                0.15433937 = queryWeight, product of:
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.051022716 = queryNorm
                0.16710453 = fieldWeight in 601, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.024915 = idf(docFreq=5836, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=601)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Abstract
    This article describes an evaluation of the Kea automatic keyphrase extraction algorithm. Document keyphrases are conventionally used as concise descriptors of document content, and are increasingly used in novel ways, including document clustering, searching and browsing interfaces, and retrieval engines. However, it is costly and time consuming to manually assign keyphrases to documents, motivating the development of tools that automatically perform this function. Previous studies have evaluated Kea's performance by measuring its ability to identify author keywords and keyphrases, but this methodology has a number of well-known limitations. The results presented in this article are based on evaluations by human assessors of the quality and appropriateness of Kea keyphrases. The results indicate that, in general, Kea produces keyphrases that are rated positively by human assessors. However, typical Kea settings can degrade performance, particularly those relating to keyphrase length and domain specificity. We found that for some settings, Kea's performance is better than that of similar systems, and that Kea's ranking of extracted keyphrases is effective. We also determined that author-specified keyphrases appear to exhibit an inherent ranking, and that they are rated highly and therefore suitable for use in training and evaluation of automatic keyphrasing systems.