Search (79 results, page 4 of 4)

  • × language_ss:"e"
  • × theme_ss:"Begriffstheorie"
  1. Bonnevie, E.: Dretske's semantic information theory and meta-theories in library and information science (2001) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 4484) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=4484,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 4484, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4484)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article presents the semantic information theory, formulated by the philosopher Fred I. Dretske, as a contribution to the discussion of metatheories and their practical implications in the field of library and information science. Dretske's theory is described in Knowledge and the flow of information. It is founded on mathematical communication theory but developed and elaborated into a cognitive, functionalistic theory, is individually oriented, and deals with the content of information. The topics are: the information process from perception to cognition, and how concept formation takes place in terms of digitisation. Other important issues are the concepts of information and knowledge, truth and meaning. Semantic information theory can be used as a frame of reference in order to explain, clarify and refute concepts currently used in library and information science, and as the basis for critical reviews of elements of the cognitive viewpoint in IR, primarily the notion of "potential information". The main contribution of the theory lies in a clarification of concepts, but there are still problems regarding the practical applications. More research is needed to combine philosophical discussions with the practice of information and library science.
    Type
    a
  2. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 2527) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=2527,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 2527, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2527)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The evolution of bibliographic classification schemes, from the end of the 19th century to our time, shows a trend of increasing possibilities to combine concepts in a classmark. While the early schemes, like DDC and LCC, were largely enumerative, more and more synthetic devices have appeared with common auxiliaries, facets, and phase relationships. The last editions of UDC and the UDC-derived FATKS project follow this evolution, by introducing more specific phase relationships and more common auxiliaries, like those for general properties and processes. This agrees with the Farradane's principle that each concept should have a place of unique definition, instead of being re-notated in each context where it occurs. This evolution appears to be unfinished, as even in most synthetic schemes many concepts have a different notation according to the disciplinary main classes where they occur. To overcome this limitation, main classes should be defined in terms of phenomena rather than disciplines: the Integrative Level Classification (ILC) research project is currently exploring this possibility. Examples with UDC, FATKS, and ILC notations are discussed.
    Type
    a
  3. Machado, L.M.O.; Martínez-Ávila, D.; Simões, M.da Graça de Melo: Concept theory in library and information science : an epistemological analysis (2019) 0.00
    0.0018909799 = product of:
      0.0037819599 = sum of:
        0.0037819599 = product of:
          0.0075639198 = sum of:
            0.0075639198 = weight(_text_:a in 5457) [ClassicSimilarity], result of:
              0.0075639198 = score(doc=5457,freq=10.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.14243183 = fieldWeight in 5457, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5457)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose The purpose of this paper is to discuss the literature on concept theory in library and information science (LIS) from an epistemological perspective, ascribing each paper to an epistemological family and discussing their relevance in the context of the knowledge organization (KO) domain. Design/methodology/approach This paper adopts a hermeneutic approach for the analysis of the texts that compose the corpus of study following contingency and categorical analyses. More specifically, the paper works with Bardin's contingency analysis and follows Hjørland's families of epistemologies for the categorization. Findings The analysis corroborates the observations made for the last ten years about the scarcity of studies on concept theory in LIS and KO. However, the study also reveals an epistemological turn on concept theory since 2009 that could be considered a departure from the rationalist views that dominated the field and a continuation of a broader paradigm shift in LIS and KO. All analyzed papers except two follow pragmatist or historicist approaches. Originality/value This paper follows-up and systematizes the contributions to the LIS and KO fields on concept theory mainly during the last decade. The epistemological analysis reveals the dominant views in this paradigm shift and the main authors and trends that are present in the LIS literature on concept theory.
    Type
    a
  4. Conceptual structures : logical, linguistic, and computational issues. 8th International Conference on Conceptual Structures, ICCS 2000, Darmstadt, Germany, August 14-18, 2000 (2000) 0.00
    0.001829468 = product of:
      0.003658936 = sum of:
        0.003658936 = product of:
          0.007317872 = sum of:
            0.007317872 = weight(_text_:a in 691) [ClassicSimilarity], result of:
              0.007317872 = score(doc=691,freq=26.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13779864 = fieldWeight in 691, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=691)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Computer scientists create models of a perceived reality. Through AI techniques, these models aim at providing the basic support for emulating cognitive behavior such as reasoning and learning, which is one of the main goals of the Al research effort. Such computer models are formed through the interaction of various acquisition and inference mechanisms: perception, concept learning, conceptual clustering, hypothesis testing, probabilistic inference, etc., and are represented using different paradigms tightly linked to the processes that use them. Among these paradigms let us cite: biological models (neural nets, genetic programming), logic-based models (first-order logic, modal logic, rule-based systems), virtual reality models (object systems, agent systems), probabilistic models (Bayesian nets, fuzzy logic), linguistic models (conceptual dependency graphs, language-based rep resentations), etc. One of the strengths of the Conceptual Graph (CG) theory is its versatility in terms of the representation paradigms under which it falls. It can be viewed and therefore used, under different representation paradigms, which makes it a popular choice for a wealth of applications. Its full coupling with different cognitive processes lead to the opening of the field toward related research communities such as the Description Logic, Formal Concept Analysis, and Computational Linguistic communities. We now see more and more research results from one community enrich the other, laying the foundations of common philosophical grounds from which a successful synergy can emerge. ICCS 2000 embodies this spirit of research collaboration. It presents a set of papers that we believe, by their exposure, will benefit the whole community. For instance, the technical program proposes tracks on Conceptual Ontologies, Language, Formal Concept Analysis, Computational Aspects of Conceptual Structures, and Formal Semantics, with some papers on pragmatism and human related aspects of computing. Never before was the program of ICCS formed by so heterogeneously rooted theories of knowledge representation and use. We hope that this swirl of ideas will benefit you as much as it already has benefited us while putting together this program
    Content
    Concepts and Language: The Role of Conceptual Structure in Human Evolution (Keith Devlin) - Concepts in Linguistics - Concepts in Natural Language (Gisela Harras) - Patterns, Schemata, and Types: Author Support through Formalized Experience (Felix H. Gatzemeier) - Conventions and Notations for Knowledge Representation and Retrieval (Philippe Martin) - Conceptual Ontology: Ontology, Metadata, and Semiotics (John F. Sowa) - Pragmatically Yours (Mary Keeler) - Conceptual Modeling for Distributed Ontology Environments (Deborah L. McGuinness) - Discovery of Class Relations in Exception Structured Knowledge Bases (Hendra Suryanto, Paul Compton) - Conceptual Graphs: Perspectives: CGs Applications: Where Are We 7 Years after the First ICCS ? (Michel Chein, David Genest) - The Engineering of a CC-Based System: Fundamental Issues (Guy W. Mineau) - Conceptual Graphs, Metamodeling, and Notation of Concepts (Olivier Gerbé, Guy W. Mineau, Rudolf K. Keller) - Knowledge Representation and Reasonings: Based on Graph Homomorphism (Marie-Laure Mugnier) - User Modeling Using Conceptual Graphs for Intelligent Agents (James F. Baldwin, Trevor P. Martin, Aimilia Tzanavari) - Towards a Unified Querying System of Both Structured and Semi-structured Imprecise Data Using Fuzzy View (Patrice Buche, Ollivier Haemmerlé) - Formal Semantics of Conceptual Structures: The Extensional Semantics of the Conceptual Graph Formalism (Guy W. Mineau) - Semantics of Attribute Relations in Conceptual Graphs (Pavel Kocura) - Nested Concept Graphs and Triadic Power Context Families (Susanne Prediger) - Negations in Simple Concept Graphs (Frithjof Dau) - Extending the CG Model by Simulations (Jean-François Baget) - Contextual Logic and Formal Concept Analysis: Building and Structuring Description Logic Knowledge Bases: Using Least Common Subsumers and Concept Analysis (Franz Baader, Ralf Molitor) - On the Contextual Logic of Ordinal Data (Silke Pollandt, Rudolf Wille) - Boolean Concept Logic (Rudolf Wille) - Lattices of Triadic Concept Graphs (Bernd Groh, Rudolf Wille) - Formalizing Hypotheses with Concepts (Bernhard Ganter, Sergei 0. Kuznetsov) - Generalized Formal Concept Analysis (Laurent Chaudron, Nicolas Maille) - A Logical Generalization of Formal Concept Analysis (Sébastien Ferré, Olivier Ridoux) - On the Treatment of Incomplete Knowledge in Formal Concept Analysis (Peter Burmeister, Richard Holzer) - Conceptual Structures in Practice: Logic-Based Networks: Concept Graphs and Conceptual Structures (Peter W. Eklund) - Conceptual Knowledge Discovery and Data Analysis (Joachim Hereth, Gerd Stumme, Rudolf Wille, Uta Wille) - CEM - A Conceptual Email Manager (Richard Cole, Gerd Stumme) - A Contextual-Logic Extension of TOSCANA (Peter Eklund, Bernd Groh, Gerd Stumme, Rudolf Wille) - A Conceptual Graph Model for W3C Resource Description Framework (Olivier Corby, Rose Dieng, Cédric Hébert) - Computational Aspects of Conceptual Structures: Computing with Conceptual Structures (Bernhard Ganter) - Symmetry and the Computation of Conceptual Structures (Robert Levinson) An Introduction to SNePS 3 (Stuart C. Shapiro) - Composition Norm Dynamics Calculation with Conceptual Graphs (Aldo de Moor) - From PROLOG++ to PROLOG+CG: A CG Object-Oriented Logic Programming Language (Adil Kabbaj, Martin Janta-Polczynski) - A Cost-Bounded Algorithm to Control Events Generalization (Gaël de Chalendar, Brigitte Grau, Olivier Ferret)
  5. Khoo, C.; Myaeng, S.H.: Identifying semantic relations in text for information retrieval and information extraction (2002) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1197) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1197,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1197, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1197)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Automatic identification of semantic relations in text is a difficult problem, but is important for many applications. It has been used for relation matching in information retrieval to retrieve documents that contain not only the concepts but also the relations between concepts specified in the user's query. It is an integral part of information extraction-extracting from natural language text, facts or pieces of information related to a particular event or topic. Other potential applications are in the construction of relational thesauri (semantic networks of related concepts) and other kinds of knowledge bases, and in natural language processing applications such as machine translation and computer comprehension of text. This chapter examines the main methods used for identifying semantic relations automatically and their application in information retrieval and information extraction.
    Type
    a
  6. Evens, M.: Thesaural relations in information retrieval (2002) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 1201) [ClassicSimilarity], result of:
              0.007030784 = score(doc=1201,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 1201, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1201)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Thesaural relations have long been used in information retrieval to enrich queries; they have sometimes been used to cluster documents as well. Sometimes the first query to an information retrieval system yields no results at all, or, what can be even more disconcerting, many thousands of hits. One solution is to rephrase the query, improving the choice of query terms by using related terms of different types. A collection of related terms is often called a thesaurus. This chapter describes the lexical-semantic relations that have been used in building thesauri and summarizes some of the effects of using these relational thesauri in information retrieval experiments
    Type
    a
  7. O'Neill, E.T.; Kammerer, K.A.; Bennett, R.: ¬The aboutness of words (2017) 0.00
    0.001757696 = product of:
      0.003515392 = sum of:
        0.003515392 = product of:
          0.007030784 = sum of:
            0.007030784 = weight(_text_:a in 3835) [ClassicSimilarity], result of:
              0.007030784 = score(doc=3835,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.13239266 = fieldWeight in 3835, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3835)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Word aboutness is defined as the relationship between words and subjects associated with them. An aboutness coefficient is developed to estimate the strength of the aboutness relationship. Words that are randomly distributed across subjects are assumed to lack aboutness and the degree to which their usage deviates from a random pattern indicates the strength of the aboutness. To estimate aboutness, title words and their associated subjects are extracted from the titles of non-fiction English language books in the OCLC WorldCat database. The usage patterns of the title words are analyzed and used to compute aboutness coefficients for each of the common title words. Words with low aboutness coefficients (An and In) are commonly found in stop word lists, whereas words with high aboutness coefficients (Carbonate, Autism) are unambiguous and have a strong subject association. The aboutness coefficient potentially can enhance indexing, advance authority control, and improve retrieval.
    Type
    a
  8. ¬The role of formal ontology in the information technology (1995) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 4746) [ClassicSimilarity], result of:
              0.006765375 = score(doc=4746,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 4746, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4746)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    A special issue devoted to the role of formal ontology in information technology. Papers were given at the International Workshop on Formal Ontology in Conceptual Analysis and Knowledge Representation, held in Padova, Iatly, Mar 95
  9. Sowa, J.F.: Ontology, metadata, and semiotics (2000) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 5071) [ClassicSimilarity], result of:
              0.006765375 = score(doc=5071,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 5071, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5071)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Internet is a giant semiotic system. It is a massive collection of Peirce's three kinds of signs: icons, which show the form of something; indices, which point to something; and symbols, which represent something according to some convention. But current proposals for ontologies and metadata have overlooked some of the most important features of signs. A sign has three aspects: it is (1) an entity that represents (2) another entity to (3) an agent. By looking only at the signs themselves, some metadata proposals have lost sight of the entities they represent and the agents - human, animal, or robot - which interpret them. With its three branches of syntax, semantics, and pragmatics, semiotics provides guidelines for organizing and using signs to represent something to someone for some purpose. Besides representation, semiotics also supports methods for translating patterns of signs intended for one purpose to other patterns intended for different but related purposes. This article shows how the fundamental semiotic primitives are represented in semantically equivalent notations for logic, including controlled natural languages and various computer languages
    Type
    a
  10. Casagrande, J.B.; Hale, K.L.: Semantic relations in Papago folk definitions (1967) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 1194) [ClassicSimilarity], result of:
              0.006765375 = score(doc=1194,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 1194, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1194)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  11. Thellefsen, M.M.; Thellefsen, T.; Sørensen, B.: Information as signs : a semiotic analysis of the information concept, determining its ontological and epistemological foundations (2018) 0.00
    0.0016913437 = product of:
      0.0033826875 = sum of:
        0.0033826875 = product of:
          0.006765375 = sum of:
            0.006765375 = weight(_text_:a in 4241) [ClassicSimilarity], result of:
              0.006765375 = score(doc=4241,freq=8.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12739488 = fieldWeight in 4241, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4241)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The purpose of this paper is to formulate an analytical framework for the information concept based on the semiotic theory. Design/methodology/approach The paper is motivated by the apparent controversy that still surrounds the information concept. Information, being a key concept within LIS, suffers from being anchored in various incompatible theories. The paper suggests that information is signs, and it demonstrates how the concept of information can be understood within C.S. Peirce's phenomenologically rooted semiotic. Hence, from there, certain ontological conditions as well epistemological consequences of the information concept can be deduced. Findings The paper argues that an understanding of information, as either objective or subjective/discursive, leads to either objective reductionism and signal processing, that fails to explain how information becomes meaningful at all, or conversely, information is understood only relative to subjective/discursive intentions, agendas, etc. To overcome the limitations of defining information as either objective or subjective/discursive, a semiotic analysis shows that information understood as signs is consistently sensitive to both objective and subjective/discursive features of information. It is consequently argued that information as concept should be defined in relation to ontological conditions having certain epistemological consequences. Originality/value The paper presents an analytical framework, derived from semiotics, that adds to the developments of the philosophical dimensions of information within LIS.
    Type
    a
  12. Harras, G.: Concepts in linguistics : concepts in natural language (2000) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 5068) [ClassicSimilarity], result of:
              0.00669738 = score(doc=5068,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 5068, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5068)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper deals with different views of lexical semantics. The focus is on the relationship between lexical expressions and conceptual components. First the assumptions about lexicalization and decompositionality of concepts shared by the most semanticists are presented, followed by a discussion of the differences between two-level-semants and one-level-semantics. The final part is concentrated on the interpretation of conceptual components in situations of communication
    Type
    a
  13. ¬The semantics of relationships : an interdisciplinary perspective (2002) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 1430) [ClassicSimilarity], result of:
              0.005858987 = score(doc=1430,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 1430, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1430)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Work on relationships takes place in many communities, including, among others, data modeling, knowledge representation, natural language processing, linguistics, and information retrieval. Unfortunately, continued disciplinary splintering and specialization keeps any one person from being familiar with the full expanse of that work. By including contributions form experts in a variety of disciplines and backgrounds, this volume demonstrates both the parallels that inform work on relationships across a number of fields and the singular emphases that have yet to be fully embraced, The volume is organized into 3 parts: (1) Types of relationships (2) Relationships in knowledge representation and reasoning (3) Applications of relationships
    Content
    Enthält die Beiträge: Pt.1: Types of relationships: CRUDE, D.A.: Hyponymy and its varieties; FELLBAUM, C.: On the semantics of troponymy; PRIBBENOW, S.: Meronymic relationships: from classical mereology to complex part-whole relations; KHOO, C. u.a.: The many facets of cause-effect relation - Pt.2: Relationships in knowledge representation and reasoning: GREEN, R.: Internally-structured conceptual models in cognitive semantics; HOVY, E.: Comparing sets of semantic relations in ontologies; GUARINO, N., C. WELTY: Identity and subsumption; JOUIS; C.: Logic of relationships - Pt.3: Applications of relationships: EVENS, M.: Thesaural relations in information retrieval; KHOO, C., S.H. MYAENG: Identifying semantic relations in text for information retrieval and information extraction; McCRAY, A.T., O. BODENREICHER: A conceptual framework for the biiomedical domain; HETZLER, B.: Visual analysis and exploration of relationships
  14. Hjoerland, B.: Concept theory (2009) 0.00
    0.0014647468 = product of:
      0.0029294936 = sum of:
        0.0029294936 = product of:
          0.005858987 = sum of:
            0.005858987 = weight(_text_:a in 3461) [ClassicSimilarity], result of:
              0.005858987 = score(doc=3461,freq=6.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.11032722 = fieldWeight in 3461, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3461)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Concept theory is an extremely broad, interdisciplinary and complex field of research related to many deep fields with very long historical traditions without much consensus. However, information science and knowledge organization cannot avoid relating to theories of concepts. Knowledge organizing systems (e.g., classification systems, thesauri, and ontologies) should be understood as systems basically organizing concepts and their semantic relations. The same is the case with information retrieval systems. Different theories of concepts have different implications for how to construe, evaluate, and use such systems. Based on a post-Kuhnian view of paradigms, this article put forward arguments that the best understanding and classification of theories of concepts is to view and classify them in accordance with epistemological theories (empiricism, rationalism, historicism, and pragmatism). It is also argued that the historicist and pragmatist understandings of concepts are the most fruitful views and that this understanding may be part of a broader paradigm shift that is also beginning to take place in information science. The importance of historicist and pragmatic theories of concepts for information science is outlined.
    Type
    a
  15. Pribbenow, S.: Meronymic relationships : from classical mereology to complex part-whole relations (2002) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 1202) [ClassicSimilarity], result of:
              0.005740611 = score(doc=1202,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 1202, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Meronymic or partonomic relations are ontological relations that are considered as fundamental as the ubiquitous, taxonomic subsumption relationship. While the latter is well-established and thoroughly investigated, there is still much work to be done in the field of meronymic relations. The aim of this chapter is to provide an overview an current research in characterizing, formalizing, classifying, and processing meronymic or partonomic relations (also called part-whole relations in artificial intelligence and application domains). The first part of the chapter investigates the role of knowledge about parts in human cognition, for example, visual perception and conceptual knowledge. The second part describes the classical approach provided by formal mereology and its extensions, which use one single transitive part-of relation, thus focusing an the notion of "part" and neglecting the notion of (something being a) "whole". This limitation leads to classifications of different part-whole relations, one of which is presented in the last part of the chapter.
    Type
    a
  16. Simoes, G.; Machado, L.; Gnoli, C.; Souza, R.: Can an ontologically-oriented KO do without concepts? (2020) 0.00
    0.0014351527 = product of:
      0.0028703054 = sum of:
        0.0028703054 = product of:
          0.005740611 = sum of:
            0.005740611 = weight(_text_:a in 4964) [ClassicSimilarity], result of:
              0.005740611 = score(doc=4964,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10809815 = fieldWeight in 4964, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4964)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The ontological approach in the development of KOS is an attempt to overcome the limitations of the traditional epistemological approach. Questions raise about the representation and organization of ontologically-oriented KO units, such as BFO universals or ILC phenomena. The study aims to compare the ontological approaches of BFO and ILC using a hermeneutic approach. We found that the differences between the units of the two systems are primarily due to the formal level of abstraction of BFO and the different organizations, namely the grouping of phenomena into ILC classes that represent complex compounds of entities in the BFO approach. In both systems the use of concepts is considered instrumental, although in the ILC they constitute the intersubjective component of the phenomena whereas in BFO they serve to access the entities of reality but are not part of them.
    Type
    a
  17. Green, R.: Internally-structured conceptual models in cognitive semantics (2002) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 1193) [ClassicSimilarity], result of:
              0.0054123 = score(doc=1193,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 1193, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1193)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Type
    a
  18. Conceptual structures : theory, tools and applications. 6th International Conference on Conceptual Structures, ICCS'98, Montpellier, France, August, 10-12, 1998, Proceedings (1998) 0.00
    0.001353075 = product of:
      0.00270615 = sum of:
        0.00270615 = product of:
          0.0054123 = sum of:
            0.0054123 = weight(_text_:a in 1378) [ClassicSimilarity], result of:
              0.0054123 = score(doc=1378,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.10191591 = fieldWeight in 1378, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1378)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book constitutes the refereed proceedings of the 6th International Conference on Conceptual Structures, ICCS'98, held in Montpellier, France, in August 1998. The 20 revised full papers and 10 research reports presented were carefully selected from a total of 66 submissions; also included are three invited contributions. The volume is divided in topical sections on knowledge representation and knowledge engineering, tools, conceptual graphs and other models, relationships with logics, algorithms and complexity, natural language processing, and applications.
  19. ISO/DIS 5127: Information and documentation - foundation and vocabulary (2013) 0.00
    8.4567186E-4 = product of:
      0.0016913437 = sum of:
        0.0016913437 = product of:
          0.0033826875 = sum of:
            0.0033826875 = weight(_text_:a in 6070) [ClassicSimilarity], result of:
              0.0033826875 = score(doc=6070,freq=2.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.06369744 = fieldWeight in 6070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6070)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This standard provides the basic terms and their definitions in the field of information and documentation for the purpose of promoting and facilitating knowledge sharing and information exchange. This International Standard presents terms and definitions of selected concepts relevant to the field of information and documentation. If a definition is from other standards, the priority of selection is TC46 technical standards, then technical standards in relevant field, and then terminology related standards. The scope of this International Standard corresponds to that of ISO/TC46, Standardization of practices relating to libraries, documentation and information centres, publishing, archives, records management, museum documentation, indexing and abstracting services, and information science. ISO 5127 was prepared by Technical Committee ISO/TC 46, Information and Documentation, WG4, Terminology of information and documentation. This second edition cancels and replaces the first edition (ISO 5127:2001), which has been technically revised to overcome problems in the practical application of ISO 5127:2001 and to take account of the new developments in the field of information and documentation.

Types

  • a 71
  • s 5
  • m 4
  • el 2
  • n 1
  • x 1
  • More… Less…