Search (7 results, page 1 of 1)

  • × language_ss:"e"
  • × theme_ss:"Computerlinguistik"
  • × type_ss:"el"
  • × year_i:[2010 TO 2020}
  1. Wong, W.; Liu, W.; Bennamoun, M.: Ontology learning from text : a look back and into the future (2010) 0.00
    3.255793E-4 = product of:
      0.0048836893 = sum of:
        0.0048836893 = product of:
          0.009767379 = sum of:
            0.009767379 = weight(_text_:information in 4733) [ClassicSimilarity], result of:
              0.009767379 = score(doc=4733,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1920054 = fieldWeight in 4733, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4733)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Ontologies are often viewed as the answer to the need for inter-operable semantics in modern information systems. The explosion of textual information on the "Read/Write" Web coupled with the increasing demand for ontologies to power the Semantic Web have made (semi-)automatic ontology learning from text a very promising research area. This together with the advanced state in related areas such as natural language processing have fuelled research into ontology learning over the past decade. This survey looks at how far we have come since the turn of the millennium, and discusses the remaining challenges that will define the research directions in this area in the near future.
  2. Liu, P.J.; Saleh, M.; Pot, E.; Goodrich, B.; Sepassi, R.; Kaiser, L.; Shazeer, N.: Generating Wikipedia by summarizing long sequences (2018) 0.00
    3.255793E-4 = product of:
      0.0048836893 = sum of:
        0.0048836893 = product of:
          0.009767379 = sum of:
            0.009767379 = weight(_text_:information in 773) [ClassicSimilarity], result of:
              0.009767379 = score(doc=773,freq=4.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.1920054 = fieldWeight in 773, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=773)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    We show that generating English Wikipedia articles can be approached as a multi-document summarization of source documents. We use extractive summarization to coarsely identify salient information and a neural abstractive model to generate the article. For the abstractive model, we introduce a decoder-only architecture that can scalably attend to very long sequences, much longer than typical encoder- decoder architectures used in sequence transduction. We show that this model can generate fluent, coherent multi-sentence paragraphs and even whole Wikipedia articles. When given reference documents, we show it can extract relevant factual information as reflected in perplexity, ROUGE scores and human evaluations.
  3. Rajasurya, S.; Muralidharan, T.; Devi, S.; Swamynathan, S.: Semantic information retrieval using ontology in university domain (2012) 0.00
    2.848226E-4 = product of:
      0.004272339 = sum of:
        0.004272339 = product of:
          0.008544678 = sum of:
            0.008544678 = weight(_text_:information in 2861) [ClassicSimilarity], result of:
              0.008544678 = score(doc=2861,freq=6.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.16796975 = fieldWeight in 2861, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2861)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Today's conventional search engines hardly do provide the essential content relevant to the user's search query. This is because the context and semantics of the request made by the user is not analyzed to the full extent. So here the need for a semantic web search arises. SWS is upcoming in the area of web search which combines Natural Language Processing and Artificial Intelligence. The objective of the work done here is to design, develop and implement a semantic search engine- SIEU(Semantic Information Extraction in University Domain) confined to the university domain. SIEU uses ontology as a knowledge base for the information retrieval process. It is not just a mere keyword search. It is one layer above what Google or any other search engines retrieve by analyzing just the keywords. Here the query is analyzed both syntactically and semantically. The developed system retrieves the web results more relevant to the user query through keyword expansion. The results obtained here will be accurate enough to satisfy the request made by the user. The level of accuracy will be enhanced since the query is analyzed semantically. The system will be of great use to the developers and researchers who work on web. The Google results are re-ranked and optimized for providing the relevant links. For ranking an algorithm has been applied which fetches more apt results for the user query.
  4. Shen, M.; Liu, D.-R.; Huang, Y.-S.: Extracting semantic relations to enrich domain ontologies (2012) 0.00
    2.3021935E-4 = product of:
      0.00345329 = sum of:
        0.00345329 = product of:
          0.00690658 = sum of:
            0.00690658 = weight(_text_:information in 267) [ClassicSimilarity], result of:
              0.00690658 = score(doc=267,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.13576832 = fieldWeight in 267, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=267)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Source
    Journal of Intelligent Information Systems
  5. Spitkovsky, V.I.; Chang, A.X.: ¬A cross-lingual dictionary for english Wikipedia concepts (2012) 0.00
    1.9733087E-4 = product of:
      0.002959963 = sum of:
        0.002959963 = product of:
          0.005919926 = sum of:
            0.005919926 = weight(_text_:information in 336) [ClassicSimilarity], result of:
              0.005919926 = score(doc=336,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.116372846 = fieldWeight in 336, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.046875 = fieldNorm(doc=336)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    We present a resource for automatically associating strings of text with English Wikipedia concepts. Our machinery is bi-directional, in the sense that it uses the same fundamental probabilistic methods to map strings to empirical distributions over Wikipedia articles as it does to map article URLs to distributions over short, language-independent strings of natural language text. For maximal interoperability, we release our resource as a set of ?at line-based text ?les, lexicographically sorted and encoded with UTF-8. These files capture joint probability distributions underlying concepts (we use the terms article, concept and Wikipedia URL interchangeably) and associated snippets of text, as well as other features that can come in handy when working with Wikipedia articles and related information.
  6. Spitkovsky, V.; Norvig, P.: From words to concepts and back : dictionaries for linking text, entities and ideas (2012) 0.00
    1.3155391E-4 = product of:
      0.0019733086 = sum of:
        0.0019733086 = product of:
          0.0039466172 = sum of:
            0.0039466172 = weight(_text_:information in 337) [ClassicSimilarity], result of:
              0.0039466172 = score(doc=337,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.0775819 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.03125 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Human language is both rich and ambiguous. When we hear or read words, we resolve meanings to mental representations, for example recognizing and linking names to the intended persons, locations or organizations. Bridging words and meaning - from turning search queries into relevant results to suggesting targeted keywords for advertisers - is also Google's core competency, and important for many other tasks in information retrieval and natural language processing. We are happy to release a resource, spanning 7,560,141 concepts and 175,100,788 unique text strings, that we hope will help everyone working in these areas. How do we represent concepts? Our approach piggybacks on the unique titles of entries from an encyclopedia, which are mostly proper and common noun phrases. We consider each individual Wikipedia article as representing a concept (an entity or an idea), identified by its URL. Text strings that refer to concepts were collected using the publicly available hypertext of anchors (the text you click on in a web link) that point to each Wikipedia page, thus drawing on the vast link structure of the web. For every English article we harvested the strings associated with its incoming hyperlinks from the rest of Wikipedia, the greater web, and also anchors of parallel, non-English Wikipedia pages. Our dictionaries are cross-lingual, and any concept deemed too fine can be broadened to a desired level of generality using Wikipedia's groupings of articles into hierarchical categories. The data set contains triples, each consisting of (i) text, a short, raw natural language string; (ii) url, a related concept, represented by an English Wikipedia article's canonical location; and (iii) count, an integer indicating the number of times text has been observed connected with the concept's url. Our database thus includes weights that measure degrees of association. For example, the top two entries for football indicate that it is an ambiguous term, which is almost twice as likely to refer to what we in the US call soccer. Vgl. auch: Spitkovsky, V.I., A.X. Chang: A cross-lingual dictionary for english Wikipedia concepts. In: http://nlp.stanford.edu/pubs/crosswikis.pdf.
  7. Nagy T., I.: Detecting multiword expressions and named entities in natural language texts (2014) 0.00
    1.1510967E-4 = product of:
      0.001726645 = sum of:
        0.001726645 = product of:
          0.00345329 = sum of:
            0.00345329 = weight(_text_:information in 1536) [ClassicSimilarity], result of:
              0.00345329 = score(doc=1536,freq=2.0), product of:
                0.050870337 = queryWeight, product of:
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.028978055 = queryNorm
                0.06788416 = fieldWeight in 1536, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.7554779 = idf(docFreq=20772, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1536)
          0.5 = coord(1/2)
      0.06666667 = coord(1/15)
    
    Abstract
    Multiword expressions (MWEs) are lexical items that can be decomposed into single words and display lexical, syntactic, semantic, pragmatic and/or statistical idiosyncrasy (Sag et al., 2002; Kim, 2008; Calzolari et al., 2002). The proper treatment of multiword expressions such as rock 'n' roll and make a decision is essential for many natural language processing (NLP) applications like information extraction and retrieval, terminology extraction and machine translation, and it is important to identify multiword expressions in context. For example, in machine translation we must know that MWEs form one semantic unit, hence their parts should not be translated separately. For this, multiword expressions should be identified first in the text to be translated. The chief aim of this thesis is to develop machine learning-based approaches for the automatic detection of different types of multiword expressions in English and Hungarian natural language texts. In our investigations, we pay attention to the characteristics of different types of multiword expressions such as nominal compounds, multiword named entities and light verb constructions, and we apply novel methods to identify MWEs in raw texts. In the thesis it will be demonstrated that nominal compounds and multiword amed entities may require a similar approach for their automatic detection as they behave in the same way from a linguistic point of view. Furthermore, it will be shown that the automatic detection of light verb constructions can be carried out using two effective machine learning-based approaches.