Search (114 results, page 1 of 6)

  • × language_ss:"e"
  • × theme_ss:"Data Mining"
  • × type_ss:"a"
  1. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.03
    0.03206814 = product of:
      0.06413628 = sum of:
        0.06413628 = product of:
          0.09620442 = sum of:
            0.009410121 = weight(_text_:a in 4577) [ClassicSimilarity], result of:
              0.009410121 = score(doc=4577,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17835285 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
            0.0867943 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.0867943 = score(doc=4577,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Date
    2. 4.2000 18:01:22
    Type
    a
  2. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.02
    0.020922724 = product of:
      0.04184545 = sum of:
        0.04184545 = product of:
          0.06276817 = sum of:
            0.013171425 = weight(_text_:a in 1270) [ClassicSimilarity], result of:
              0.013171425 = score(doc=1270,freq=12.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.24964198 = fieldWeight in 1270, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
            0.049596746 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.049596746 = score(doc=1270,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Current algorithms for finding associations among the attributes describing data in a database have a number of shortcomings. Presents a novel method for association generation, that answers all desiderata. The method is different from all existing algorithms and especially suitable to textual databases with binary attributes. Uses subword trees for quick indexing into the required database statistics. Tests the algorithm on the Reuters-22173 database with satisfactory results
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
    Type
    a
  3. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.02
    0.01906709 = product of:
      0.03813418 = sum of:
        0.03813418 = product of:
          0.05720127 = sum of:
            0.007604526 = weight(_text_:a in 1737) [ClassicSimilarity], result of:
              0.007604526 = score(doc=1737,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.14413087 = fieldWeight in 1737, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
            0.049596746 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.049596746 = score(doc=1737,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
    Type
    a
  4. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.02
    0.017602425 = product of:
      0.03520485 = sum of:
        0.03520485 = product of:
          0.05280727 = sum of:
            0.009410121 = weight(_text_:a in 2908) [ClassicSimilarity], result of:
              0.009410121 = score(doc=2908,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17835285 = fieldWeight in 2908, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
            0.04339715 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.04339715 = score(doc=2908,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Focuses on the information modelling side of conceptual modelling. Deals with the exploitation of fact verbalisations after finishing the actual information system. Verbalisations are used as input for the design of the so-called information model. Exploits these verbalisation in 4 directions: considers their use for a conceptual query language, the verbalisation of instances, the description of the contents of a database and for the verbalisation of queries in a computer supported query environment. Provides an example session with an envisioned tool for end user query formulations that exploits the verbalisation
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
    Type
    a
  5. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.01
    0.013296565 = product of:
      0.02659313 = sum of:
        0.02659313 = product of:
          0.039889693 = sum of:
            0.008891728 = weight(_text_:a in 5011) [ClassicSimilarity], result of:
              0.008891728 = score(doc=5011,freq=14.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1685276 = fieldWeight in 5011, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
            0.030997967 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.030997967 = score(doc=5011,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Type
    a
  6. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.01
    0.012837617 = product of:
      0.025675233 = sum of:
        0.025675233 = product of:
          0.03851285 = sum of:
            0.007514882 = weight(_text_:a in 668) [ClassicSimilarity], result of:
              0.007514882 = score(doc=668,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.14243183 = fieldWeight in 668, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
            0.030997967 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.030997967 = score(doc=668,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
    Type
    a
  7. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.01
    0.01257316 = product of:
      0.02514632 = sum of:
        0.02514632 = product of:
          0.03771948 = sum of:
            0.0067215143 = weight(_text_:a in 1605) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=1605,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 1605, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
            0.030997967 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.030997967 = score(doc=1605,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
    Type
    a
  8. Tu, Y.-N.; Hsu, S.-L.: Constructing conceptual trajectory maps to trace the development of research fields (2016) 0.01
    0.010523799 = product of:
      0.021047598 = sum of:
        0.021047598 = product of:
          0.031571396 = sum of:
            0.0095056575 = weight(_text_:a in 3059) [ClassicSimilarity], result of:
              0.0095056575 = score(doc=3059,freq=16.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.18016359 = fieldWeight in 3059, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3059)
            0.022065736 = weight(_text_:h in 3059) [ClassicSimilarity], result of:
              0.022065736 = score(doc=3059,freq=4.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1940976 = fieldWeight in 3059, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3059)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This study proposes a new method to construct and trace the trajectory of conceptual development of a research field by combining main path analysis, citation analysis, and text-mining techniques. Main path analysis, a method used commonly to trace the most critical path in a citation network, helps describe the developmental trajectory of a research field. This study extends the main path analysis method and applies text-mining techniques in the new method, which reflects the trajectory of conceptual development in an academic research field more accurately than citation frequency, which represents only the articles examined. Articles can be merged based on similarity of concepts, and by merging concepts the history of a research field can be described more precisely. The new method was applied to the "h-index" and "text mining" fields. The precision, recall, and F-measures of the h-index were 0.738, 0.652, and 0.658 and those of text-mining were 0.501, 0.653, and 0.551, respectively. Last, this study not only establishes the conceptual trajectory map of a research field, but also recommends keywords that are more precise than those used currently by researchers. These precise keywords could enable researchers to gather related works more quickly than before.
    Type
    a
  9. Kraker, P.; Kittel, C,; Enkhbayar, A.: Open Knowledge Maps : creating a visual interface to the world's scientific knowledge based on natural language processing (2016) 0.01
    0.010043396 = product of:
      0.020086791 = sum of:
        0.020086791 = product of:
          0.030130185 = sum of:
            0.011406789 = weight(_text_:a in 3205) [ClassicSimilarity], result of:
              0.011406789 = score(doc=3205,freq=16.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.2161963 = fieldWeight in 3205, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3205)
            0.018723397 = weight(_text_:h in 3205) [ClassicSimilarity], result of:
              0.018723397 = score(doc=3205,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 3205, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3205)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The goal of Open Knowledge Maps is to create a visual interface to the world's scientific knowledge. The base for this visual interface consists of so-called knowledge maps, which enable the exploration of existing knowledge and the discovery of new knowledge. Our open source knowledge mapping software applies a mixture of summarization techniques and similarity measures on article metadata, which are iteratively chained together. After processing, the representation is saved in a database for use in a web visualization. In the future, we want to create a space for collective knowledge mapping that brings together individuals and communities involved in exploration and discovery. We want to enable people to guide each other in their discovery by collaboratively annotating and modifying the automatically created maps.
    Source
    027.7 Zeitschrift für Bibliothekskultur. 4(2016), H.2
    Type
    a
  10. Raghavan, V.V.; Deogun, J.S.; Sever, H.: Knowledge discovery and data mining : introduction (1998) 0.01
    0.009997789 = product of:
      0.019995578 = sum of:
        0.019995578 = product of:
          0.029993366 = sum of:
            0.008149404 = weight(_text_:a in 2899) [ClassicSimilarity], result of:
              0.008149404 = score(doc=2899,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1544581 = fieldWeight in 2899, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2899)
            0.021843962 = weight(_text_:h in 2899) [ClassicSimilarity], result of:
              0.021843962 = score(doc=2899,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 2899, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2899)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Defines knowledge discovery and database mining. The challenge for knowledge discovery in databases (KDD) is to automatically process large quantities of raw data, identifying the most significant and meaningful patterns, and present these as as knowledge appropriate for achieving a user's goals. Data mining is the process of deriving useful knowledge from real world databases through the application of pattern extraction techniques. Explains the goals of, and motivation for, research work on data mining. Discusses the nature of database contents, along with problems within the field of data mining
    Footnote
    Contribution to a special issue devoted to knowledge discovery and data mining
    Type
    a
  11. Kulathuramaiyer, N.; Maurer, H.: Implications of emerging data mining (2009) 0.01
    0.009797825 = product of:
      0.01959565 = sum of:
        0.01959565 = product of:
          0.029393472 = sum of:
            0.010670074 = weight(_text_:a in 3144) [ClassicSimilarity], result of:
              0.010670074 = score(doc=3144,freq=14.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.20223314 = fieldWeight in 3144, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3144)
            0.018723397 = weight(_text_:h in 3144) [ClassicSimilarity], result of:
              0.018723397 = score(doc=3144,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 3144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3144)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Data Mining describes a technology that discovers non-trivial hidden patterns in a large collection of data. Although this technology has a tremendous impact on our lives, the invaluable contributions of this invisible technology often go unnoticed. This paper discusses advances in data mining while focusing on the emerging data mining capability. Such data mining applications perform multidimensional mining on a wide variety of heterogeneous data sources, providing solutions to many unresolved problems. This paper also highlights the advantages and disadvantages arising from the ever-expanding scope of data mining. Data Mining augments human intelligence by equipping us with a wealth of knowledge and by empowering us to perform our daily tasks better. As the mining scope and capacity increases, users and organizations become more willing to compromise privacy. The huge data stores of the 'master miners' allow them to gain deep insights into individual lifestyles and their social and behavioural patterns. Data integration and analysis capability of combining business and financial trends together with the ability to deterministically track market changes will drastically affect our lives.
    Source
    Social Semantic Web: Web 2.0, was nun? Hrsg.: A. Blumauer u. T. Pellegrini
    Type
    a
  12. Ekbia, H.; Mattioli, M.; Kouper, I.; Arave, G.; Ghazinejad, A.; Bowman, T.; Suri, V.R.; Tsou, A.; Weingart, S.; Sugimoto, C.R.: Big data, bigger dilemmas : a critical review (2015) 0.01
    0.009392545 = product of:
      0.01878509 = sum of:
        0.01878509 = product of:
          0.028177634 = sum of:
            0.012574802 = weight(_text_:a in 2155) [ClassicSimilarity], result of:
              0.012574802 = score(doc=2155,freq=28.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.23833402 = fieldWeight in 2155, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2155)
            0.015602832 = weight(_text_:h in 2155) [ClassicSimilarity], result of:
              0.015602832 = score(doc=2155,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 2155, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2155)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    The recent interest in Big Data has generated a broad range of new academic, corporate, and policy practices along with an evolving debate among its proponents, detractors, and skeptics. While the practices draw on a common set of tools, techniques, and technologies, most contributions to the debate come either from a particular disciplinary perspective or with a focus on a domain-specific issue. A close examination of these contributions reveals a set of common problematics that arise in various guises and in different places. It also demonstrates the need for a critical synthesis of the conceptual and practical dilemmas surrounding Big Data. The purpose of this article is to provide such a synthesis by drawing on relevant writings in the sciences, humanities, policy, and trade literature. In bringing these diverse literatures together, we aim to shed light on the common underlying issues that concern and affect all of these areas. By contextualizing the phenomenon of Big Data within larger socioeconomic developments, we also seek to provide a broader understanding of its drivers, barriers, and challenges. This approach allows us to identify attributes of Big Data that require more attention-autonomy, opacity, generativity, disparity, and futurity-leading to questions and ideas for moving beyond dilemmas.
    Type
    a
  13. Chen, H.; Chau, M.: Web mining : machine learning for Web applications (2003) 0.01
    0.008929739 = product of:
      0.017859478 = sum of:
        0.017859478 = product of:
          0.026789214 = sum of:
            0.008065818 = weight(_text_:a in 4242) [ClassicSimilarity], result of:
              0.008065818 = score(doc=4242,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15287387 = fieldWeight in 4242, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4242)
            0.018723397 = weight(_text_:h in 4242) [ClassicSimilarity], result of:
              0.018723397 = score(doc=4242,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 4242, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4242)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    With more than two billion pages created by millions of Web page authors and organizations, the World Wide Web is a tremendously rich knowledge base. The knowledge comes not only from the content of the pages themselves, but also from the unique characteristics of the Web, such as its hyperlink structure and its diversity of content and languages. Analysis of these characteristics often reveals interesting patterns and new knowledge. Such knowledge can be used to improve users' efficiency and effectiveness in searching for information an the Web, and also for applications unrelated to the Web, such as support for decision making or business management. The Web's size and its unstructured and dynamic content, as well as its multilingual nature, make the extraction of useful knowledge a challenging research problem. Furthermore, the Web generates a large amount of data in other formats that contain valuable information. For example, Web server logs' information about user access patterns can be used for information personalization or improving Web page design.
    Type
    a
  14. Teich, E.; Degaetano-Ortlieb, S.; Fankhauser, P.; Kermes, H.; Lapshinova-Koltunski, E.: ¬The linguistic construal of disciplinarity : a data-mining approach using register features (2016) 0.01
    0.008929739 = product of:
      0.017859478 = sum of:
        0.017859478 = product of:
          0.026789214 = sum of:
            0.008065818 = weight(_text_:a in 3015) [ClassicSimilarity], result of:
              0.008065818 = score(doc=3015,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15287387 = fieldWeight in 3015, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3015)
            0.018723397 = weight(_text_:h in 3015) [ClassicSimilarity], result of:
              0.018723397 = score(doc=3015,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 3015, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3015)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    We analyze the linguistic evolution of selected scientific disciplines over a 30-year time span (1970s to 2000s). Our focus is on four highly specialized disciplines at the boundaries of computer science that emerged during that time: computational linguistics, bioinformatics, digital construction, and microelectronics. Our analysis is driven by the question whether these disciplines develop a distinctive language use-both individually and collectively-over the given time period. The data set is the English Scientific Text Corpus (scitex), which includes texts from the 1970s/1980s and early 2000s. Our theoretical basis is register theory. In terms of methods, we combine corpus-based methods of feature extraction (various aggregated features [part-of-speech based], n-grams, lexico-grammatical patterns) and automatic text classification. The results of our research are directly relevant to the study of linguistic variation and languages for specific purposes (LSP) and have implications for various natural language processing (NLP) tasks, for example, authorship attribution, text mining, or training NLP tools.
    Type
    a
  15. Chen, Y.-L.; Liu, Y.-H.; Ho, W.-L.: ¬A text mining approach to assist the general public in the retrieval of legal documents (2013) 0.01
    0.008569533 = product of:
      0.017139066 = sum of:
        0.017139066 = product of:
          0.025708599 = sum of:
            0.006985203 = weight(_text_:a in 521) [ClassicSimilarity], result of:
              0.006985203 = score(doc=521,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13239266 = fieldWeight in 521, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=521)
            0.018723397 = weight(_text_:h in 521) [ClassicSimilarity], result of:
              0.018723397 = score(doc=521,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=521)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Applying text mining techniques to legal issues has been an emerging research topic in recent years. Although some previous studies focused on assisting professionals in the retrieval of related legal documents, they did not take into account the general public and their difficulty in describing legal problems in professional legal terms. Because this problem has not been addressed by previous research, this study aims to design a text-mining-based method that allows the general public to use everyday vocabulary to search for and retrieve criminal judgments. The experimental results indicate that our method can help the general public, who are not familiar with professional legal terms, to acquire relevant criminal judgments more accurately and effectively.
    Type
    a
  16. Ku, L.-W.; Chen, H.-H.: Mining opinions from the Web : beyond relevance retrieval (2007) 0.01
    0.008475498 = product of:
      0.016950997 = sum of:
        0.016950997 = product of:
          0.025426494 = sum of:
            0.0033607571 = weight(_text_:a in 605) [ClassicSimilarity], result of:
              0.0033607571 = score(doc=605,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.06369744 = fieldWeight in 605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=605)
            0.022065736 = weight(_text_:h in 605) [ClassicSimilarity], result of:
              0.022065736 = score(doc=605,freq=4.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1940976 = fieldWeight in 605, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=605)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  17. Sun, X.; Lin, H.: Topical community detection from mining user tagging behavior and interest (2013) 0.01
    0.008142265 = product of:
      0.01628453 = sum of:
        0.01628453 = product of:
          0.024426792 = sum of:
            0.0057033943 = weight(_text_:a in 605) [ClassicSimilarity], result of:
              0.0057033943 = score(doc=605,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.10809815 = fieldWeight in 605, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=605)
            0.018723397 = weight(_text_:h in 605) [ClassicSimilarity], result of:
              0.018723397 = score(doc=605,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.16469726 = fieldWeight in 605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=605)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    With the development of Web2.0, social tagging systems in which users can freely choose tags to annotate resources according to their interests have attracted much attention. In particular, literature on the emergence of collective intelligence in social tagging systems has increased. In this article, we propose a probabilistic generative model to detect latent topical communities among users. Social tags and resource contents are leveraged to model user interest in two similar and correlated ways. Our primary goal is to capture user tagging behavior and interest and discover the emergent topical community structure. The communities should be groups of users with frequent social interactions as well as similar topical interests, which would have important research implications for personalized information services. Experimental results on two real social tagging data sets with different genres have shown that the proposed generative model more accurately models user interest and detects high-quality and meaningful topical communities.
    Type
    a
  18. Suakkaphong, N.; Zhang, Z.; Chen, H.: Disease named entity recognition using semisupervised learning and conditional random fields (2011) 0.01
    0.007441449 = product of:
      0.014882898 = sum of:
        0.014882898 = product of:
          0.022324346 = sum of:
            0.0067215143 = weight(_text_:a in 4367) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=4367,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 4367, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4367)
            0.015602832 = weight(_text_:h in 4367) [ClassicSimilarity], result of:
              0.015602832 = score(doc=4367,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 4367, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4367)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Information extraction is an important text-mining task that aims at extracting prespecified types of information from large text collections and making them available in structured representations such as databases. In the biomedical domain, information extraction can be applied to help biologists make the most use of their digital-literature archives. Currently, there are large amounts of biomedical literature that contain rich information about biomedical substances. Extracting such knowledge requires a good named entity recognition technique. In this article, we combine conditional random fields (CRFs), a state-of-the-art sequence-labeling algorithm, with two semisupervised learning techniques, bootstrapping and feature sampling, to recognize disease names from biomedical literature. Two data-processing strategies for each technique also were analyzed: one sequentially processing unlabeled data partitions and another one processing unlabeled data partitions in a round-robin fashion. The experimental results showed the advantage of semisupervised learning techniques given limited labeled training data. Specifically, CRFs with bootstrapping implemented in sequential fashion outperformed strictly supervised CRFs for disease name recognition. The project was supported by NIH/NLM Grant R33 LM07299-01, 2002-2005.
    Type
    a
  19. Wei, C.-P.; Lee, Y.-H.; Chiang, Y.-S.; Chen, C.-T.; Yang, C.C.C.: Exploiting temporal characteristics of features for effectively discovering event episodes from news corpora (2014) 0.01
    0.007441449 = product of:
      0.014882898 = sum of:
        0.014882898 = product of:
          0.022324346 = sum of:
            0.0067215143 = weight(_text_:a in 1225) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=1225,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 1225, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1225)
            0.015602832 = weight(_text_:h in 1225) [ClassicSimilarity], result of:
              0.015602832 = score(doc=1225,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 1225, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1225)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    An organization performing environmental scanning generally monitors or tracks various events concerning its external environment. One of the major resources for environmental scanning is online news documents, which are readily accessible on news websites or infomediaries. However, the proliferation of the World Wide Web, which increases information sources and improves information circulation, has vastly expanded the amount of information to be scanned. Thus, it is essential to develop an effective event episode discovery mechanism to organize news documents pertaining to an event of interest. In this study, we propose two new metrics, Term Frequency × Inverse Document FrequencyTempo (TF×IDFTempo) and TF×Enhanced-IDFTempo, and develop a temporal-based event episode discovery (TEED) technique that uses the proposed metrics for feature selection and document representation. Using a traditional TF×IDF-based hierarchical agglomerative clustering technique as a performance benchmark, our empirical evaluation reveals that the proposed TEED technique outperforms its benchmark, as measured by cluster recall and cluster precision. In addition, the use of TF×Enhanced-IDFTempo significantly improves the effectiveness of event episode discovery when compared with the use of TF×IDFTempo.
    Type
    a
  20. Zhang, Z.; Li, Q.; Zeng, D.; Ga, H.: Extracting evolutionary communities in community question answering (2014) 0.01
    0.007441449 = product of:
      0.014882898 = sum of:
        0.014882898 = product of:
          0.022324346 = sum of:
            0.0067215143 = weight(_text_:a in 1286) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=1286,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 1286, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1286)
            0.015602832 = weight(_text_:h in 1286) [ClassicSimilarity], result of:
              0.015602832 = score(doc=1286,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.13724773 = fieldWeight in 1286, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1286)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    With the rapid growth of Web 2.0, community question answering (CQA) has become a prevalent information seeking channel, in which users form interactive communities by posting questions and providing answers. Communities may evolve over time, because of changes in users' interests, activities, and new users joining the network. To better understand user interactions in CQA communities, it is necessary to analyze the community structures and track community evolution over time. Existing work in CQA focuses on question searching or content quality detection, and the important problems of community extraction and evolutionary pattern detection have not been studied. In this article, we propose a probabilistic community model (PCM) to extract overlapping community structures and capture their evolution patterns in CQA. The empirical results show that our algorithm appears to improve the community extraction quality. We show empirically, using the iPhone data set, that interesting community evolution patterns can be discovered, with each evolution pattern reflecting the variation of users' interests over time. Our analysis suggests that individual users could benefit to gain comprehensive information from tracking the transition of products. We also show that the communities provide a decision-making basis for business.
    Type
    a

Years

Classifications